People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Reisberg, S.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
E-assay concept: detection of bisphenol A with a label-free electrochemical competitive immunoassay.
Abstract
A label-free electrochemical immunosensor was developed by electropolymerization of N-(3-(4-(2-(4-hydroxyphenyl)propan-2-yl)phenoxy)propyl) 3-(5-hydroxy-1,4-dihydro-1,4-dioxonaphthalen-2(3)-yl)propionamide (JugBPA). By combination with an antibody directed to bisphenol A (αBPA), this conducting polymer-based biosensor can detect BPA directly with a limit of detection of 2pgmL(-1). Square wave voltammetry shows that the polymer film presents a current decrease upon anti-BPA binding and an opposite current increase upon BPA addition in solution. This electrochemical immunosensor (E-assay) also shows high selectivity towards closely related compounds (bisphenol A dimethacrylate, and dibutyl phthalate). The E-assay concept described here could be a promising tool for simple, low-cost and reagentless on-site environmental monitoring.