People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Alegret, Salvador
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2011Magneto immunoassays for plasmodium falciparum histidine-rich protein 2 related to malaria based on magnetic nanoparticlescitations
- 2009Electrochemical immunosensor for the diagnosis of celiac diseasecitations
- 2009Double-tagging polymerase chain reaction with a thiolated primer and electrochemical genosensing based on gold nanocomposite sensor for food safetycitations
- 2009Immunoassay for folic acid detection in vitamin-fortified milk based on electrochemical magneto sensorscitations
- 2007Electrochemical magneto immunosensing of antibiotic residues in milkcitations
- 2007Bioaffinity platforms based on carbon-polymer biocomposites for electrochemical biosensingcitations
- 2007Electrochemical biosensing of pesticide residues based on affinity biocomposite platformscitations
- 2007In situ DNA amplification with magnetic primers for the electrochemical detection of food pathogenscitations
- 2006Novel routes for inter-matrix synthesis and characterization of polymer stabilized metal nanoparticles for molecular recognition devicescitations
- 2006Impedimetric genosensors for the detection of DNA hybridizationcitations
- 2006Genomagnetic assay based on label-free electrochemical detection using magneto-composite electrodescitations
- 2006Urea impedimetric biosensor based on polymer degradation onto interdigitated electrodescitations
- 2006Electrochemical magnetoimmunosensing strategy for the detection of pesticides residuescitations
- 2006Extractant assisted synthesis of polymer stabilized platinum and palladium metal nanoparticles for sensor applicationscitations
- 2006Electrochemical biosensing based on universal affinity biocomposite platformscitations
- 2005Integration of a glucose biosensor based on an epoxy-graphite- TTF·TCNQ-GOD biocomposite into a FIA systemcitations
- 2005Magnetically trigged direct electrochemical detection of DNA hybridization using Au67 quantum dot as electrical tracercitations
- 2005Electrochemical genosensing based on rigid carbon composites. A reviewcitations
- 2005Glucose biosensor based on carbon nanotube epoxy compositescitations
- 2005Sensitive stripping voltammetry of heavy metals by using a composite sensor based on a built-in bismuth precursorcitations
- 2004Renewable Protein A modified graphite-epoxy composite for electrochemical immunosensingcitations
- 2004Rigid carbon composites: A new transducing material for label-free electrochemical genosensingcitations
- 2003Graphite-epoxy platforms for electrochemical genosensingcitations
- 2003Rapid electrochemical genosensor assay using a streptavidin carbon-polymer biocomposite electrodecitations
- 2003Graphite-epoxy composites as a new transducing material for electrochemical genosensingcitations
Places of action
Organizations | Location | People |
---|
article
Immunoassay for folic acid detection in vitamin-fortified milk based on electrochemical magneto sensors
Abstract
An immunoassay-based strategy for folic acid in vitamin-fortified milk with electrochemical detection using magneto sensors is described for the first time. Among direct and indirect competitive formats, best performance was achieved with an indirect competitive immunoassay. The immunological reaction for folic acid (FA) detection was performed, for the first time on the magnetic bead as solid support by the covalent immobilization of a protein conjugate BSA-FA on tosyl-activated magnetic bead. Further competition for the specific antibody between FA in the food sample and FA immobilized on the magnetic bead was achieved, followed by the reaction with a secondary antibody conjugated with HRP (AntiIgG-HRP). Then, the modified magnetic beads were easily captured by a magneto sensor made of graphite-epoxy composite (m-GEC) which was also used as the transducer for the electrochemical detection. The performance of the immunoassay-based strategy with electrochemical detection using magneto sensors was successfully evaluated using spiked-milk samples and compared with a novel magneto-ELISA based on optical detection. The detection limit was found to be of the order of μg l-1 (13.1 nmol l-1, 5.8 μg l-1) for skimmed milk. Commercial vitamin-fortified milk samples were also evaluated obtaining good accuracy in the results. This novel strategy offers great promise for rapid, simple, cost-effective and on-site analysis of biological and food samples. © 2008 Elsevier B.V. All rights reserved.