Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Marco, M. P.

  • Google
  • 4
  • 8
  • 384

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2009Immunoassay for folic acid detection in vitamin-fortified milk based on electrochemical magneto sensors80citations
  • 2007Electrochemical magneto immunosensing of antibiotic residues in milk117citations
  • 2007Electrochemical biosensing of pesticide residues based on affinity biocomposite platforms37citations
  • 2006Electrochemical magnetoimmunosensing strategy for the detection of pesticides residues150citations

Places of action

Chart of shared publication
Lermo, A.
1 / 4 shared
Pividori Gurgo, María Isabel
4 / 32 shared
Hernández, S.
1 / 8 shared
Fabiano, S.
1 / 9 shared
Galve, R.
4 / 4 shared
Alegret, Salvador
4 / 25 shared
Adrian, J.
1 / 1 shared
Zacco, E.
3 / 6 shared
Chart of publication period
2009
2007
2006

Co-Authors (by relevance)

  • Lermo, A.
  • Pividori Gurgo, María Isabel
  • Hernández, S.
  • Fabiano, S.
  • Galve, R.
  • Alegret, Salvador
  • Adrian, J.
  • Zacco, E.
OrganizationsLocationPeople

article

Electrochemical biosensing of pesticide residues based on affinity biocomposite platforms

  • Pividori Gurgo, María Isabel
  • Galve, R.
  • Alegret, Salvador
  • Zacco, E.
  • Marco, M. P.
Abstract

A novel and very sensitive electrochemical immunosensing strategy for the detection of atrazine based on affinity biocomposite transducers is presented. Firstly, the graphite-epoxy composite transducer was bulk-modified with different universal affinity biomolecules, such as avidin and Protein A. Two strategies for the immobilization of the anti-atrazine antibodies on both biocomposite transducers were evaluated: 'wet-affinity' and 'dry-assisted affinity' immobilization. Finally, the performance of a novel anti-atrazine immunocomposite bulk-modified with anti-atrazine antibodies was also evaluated. The better immobilization performance of the anti-atrazine antibodies was achieved by 'dry-assisted affinity' immobilization on Protein A (2%) graphite-epoxy biocomposite (ProtA(2%)-GEB) as a transducer. The immunological reaction for the detection of atrazine performed on the ProtA(2%)-GEB biosensors is based on a direct competitive assay using atrazine-HRP tracer as the enzymatic label. The electrochemical detection is thus achieved through a suitable substrate and a mediator for the enzyme HRP. This novel strategy was successfully evaluated using spiked orange juice samples. The detection limit for atrazine in orange juices using the competitive electrochemical immunosensing assay was found to be 6 × 10-3 μg L-1 (0.03 nmol L-1) thus this biosensing method accomplishes by far the LODs required for the European Community directives for potable water and food samples (0.1 μg L-1). This strategy offers great promise for rapid, simple, cost effective, and on-site biosensing of biological, food, and environmental samples. © 2006 Elsevier B.V. All rights reserved.

Topics
  • impedance spectroscopy
  • composite