People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Markeb, Ahmad Abo
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2024Synthesis of Cobalt-Based Nanoparticles as Catalysts for Methanol Synthesis from CO2 Hydrogenationcitations
- 2024Hexavalent chromium ion removal from wastewater using novel nanocomposite based on the impregnation of zero-valent iron nanoparticles into polyurethane foamcitations
- 2024Green Supercritical CO2 Synthesis of [Copper Clusters@FeBTC]@rGO Catalyst for Highly Efficient Hydrogenation of CO2 to Methanolcitations
- 2023Magnetite-based nanoparticles and nanocomposites for recovery of overloaded anaerobic digesterscitations
- 2019Corrigendum to
- 2018Synthesis of polyethylene/silica-silver nanocomposites with antibacterial properties by in situ polymerizationcitations
- 2016Phosphate removal and recovery from water using nanocomposite of immobilized magnetite nanoparticles on cationic polymercitations
Places of action
Organizations | Location | People |
---|
article
Magnetite-based nanoparticles and nanocomposites for recovery of overloaded anaerobic digesters
Abstract
The effect of magnetite nanoparticles and nanocomposites (magnetite nanoparticles impregnated into graphene oxide) supplement on the recovery of overloaded laboratory batch anaerobic reactors was assessed using two types of starting inoculum: anaerobic granular sludge (GS) and flocculent sludge (FS). Both nanomaterials recovered methane production at a dose of 0.27 g/L within 40 days in GS. Four doses of magnetite nanoparticles from 0.075 to 1 g/L recovered the process in FS systems between 30 and 50 days relaying on the dose. The presence of nanomaterials helped to reverse the effect of volatile fatty acids inhibition and enabled microbial communities to recover but also favoured the development of certain microorganisms over others. In GS reactors, the methanogenic population changed from being mostly acetoclastic (Methanothrix soehngenii) to being dominated by hydrogenotrophic species (Methanobacterium beijingense). Nanomaterial amendment may serve as a preventative measure or provide an effective remedial solution for system recovery following overloading.