Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Khandelwal, Nitin

  • Google
  • 2
  • 6
  • 153

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Impact of long-term storage of various redox-sensitive supported nanocomposites on their application in removal of dyes from wastewater: mechanisms delineation through spectroscopic investigations29citations
  • 2013Dysfunctional glutamatergic and γ-aminobutyric acidergic activities in prefrontal cortex of mice in social defeat model of depression.124citations

Places of action

Chart of shared publication
Tiwari, Ekta
1 / 1 shared
Marsac, Remi
1 / 3 shared
Monikh, Fazel Abdolahpur
1 / 1 shared
Singh, Nisha
1 / 4 shared
Darbha, Gopala Krishna
1 / 1 shared
Schäfer, Thorsten
1 / 3 shared
Chart of publication period
2021
2013

Co-Authors (by relevance)

  • Tiwari, Ekta
  • Marsac, Remi
  • Monikh, Fazel Abdolahpur
  • Singh, Nisha
  • Darbha, Gopala Krishna
  • Schäfer, Thorsten
OrganizationsLocationPeople

article

Dysfunctional glutamatergic and γ-aminobutyric acidergic activities in prefrontal cortex of mice in social defeat model of depression.

  • Khandelwal, Nitin
Abstract

BACKGROUND: Depression is a complex neuropsychiatric syndrome that is often very severe and life threatening. In spite of the remarkable progress in understanding the neural biology, the etiopathophysiology of depression is still elusive. In this study, we have investigated molecular mechanisms in the prefrontal cortex of mice showing depression-like phenotype induced by chronic defeat stress. METHODS: Depression-like phenotype was induced in C57BL/6 mice by subjecting them to a 10-day social defeat paradigm. The metabolic activity of excitatory (glutamatergic) and inhibitory (γ-aminobutyric acid [GABA]ergic) neurons of the prefrontal cortex was measured by (1)H-[(13)C]-nuclear magnetic resonance spectroscopy together with infusion of [1,6-(13)C2]glucose. In addition, the expression level of genes associated with glutamatergic and GABAergic pathways was monitored by quantitative polymerase chain reaction. RESULTS: Mice showing depression-like phenotype exhibit significant reduction in the levels of glutamate, glutamine, N-acetyl aspartate, and taurine in the prefrontal cortex. Most importantly, findings of reduced (13)C labeling of glutamate-C4, glutamate-C3, and GABA-C2 from [1,6-(13)C2]glucose indicate decreased glutamatergic and GABAergic neuronal metabolism and neurotransmitter cycling in the depressed mice. The reduced glutamine-C4 labeling suggests decreased neurotransmitter cycling in depression. Quantitative polymerase chain reaction analysis revealed reduced transcripts of Gad1 and Eaat2 genes, which code for enzymes involved in the synthesis of GABA and the clearance of glutamate from synapses, respectively. CONCLUSIONS: These data indicate that the activities of glutamatergic and GABAergic neurons are reduced in mice showing a depression-like phenotype, which is supported by molecular data for the expression of genes involved in glutamate and GABA pathways.

Topics
  • impedance spectroscopy
  • Nuclear Magnetic Resonance spectroscopy