People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pinelo, Manuel
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2022Electrospun aluminum silicate nanofibers as novel support material for immobilization of alcohol dehydrogenasecitations
- 2022Electrospun aluminum silicate nanofibers as novel support material for immobilization of alcohol dehydrogenasecitations
- 2022Economic and environmental analysis of bio-succinic acid production: from established processes to a new continuous fermentation approach with in-situ electrolytic extractioncitations
- 2021Tailor-made novel electrospun polystyrene/poly(D,L-lactide-co-glycolide) for oxidoreductases immobilization: Improvement of catalytic properties under extreme reaction conditionscitations
- 2020Sustainable Process Synthesis, Design and Innovation of Bio-succinic Acid Productioncitations
- 2020The response surface methodology for optimization of tyrosinase immobilization onto electrospun polycaprolactone-chitosan fibers for use in bisphenol A removalcitations
- 2020Surface treatments and functionalization of metal‐ceramic membranes for improved enzyme immobilization performancecitations
Places of action
Organizations | Location | People |
---|
article
Tailor-made novel electrospun polystyrene/poly(D,L-lactide-co-glycolide) for oxidoreductases immobilization: Improvement of catalytic properties under extreme reaction conditions
Abstract
Immobilized enzymes find applications in many areas such as pharmacy, medicine, food production and environmental protection. However, protecting these biocatalysts against harsh reaction conditions and retaining their enzymatic activity even after several biocatalytic cycles are major challenges. Properly selected supports and type of surface modifier therefore seem to be crucial for achieving high retention of catalytic activity of immobilized biomolecules. Here we propose production of novel composite electrospun fibers from polystyrene/poly(D,L-lactide-co-glycolide) (PS/PDLG) and its application as a support for immobilization of oxidoreductases such as alcohol dehydrogenase (ADH) and laccase (LAC). Two strategies of covalent binding, (i) (3-aminopropyl)triethoxysilane (APTES) with glutaraldehyde (GA and (ii) polydopamine (PDA), were applied to attach oxidoreductases to PS/PDLG. The average fiber diameter was shown to increase from 1.252 µm to even 3.367 µm after enzyme immobilization. Effective production of PS/PDLG fibers and biomolecule attachment were confirmed by Fourier transform infrared spectroscopy analysis. The highest substrate conversion efficiency was observed at pH 6.5 and 5 for ADH and LAC, respectively, and at 25 °C for enzymes attached using the APTES+GA approach. Improvement of enzyme stabilization at high temperatures was confirmed in that relative activities of enzymes immobilized onto PS/PDLG fibers were over 20% higher than those of the free biomolecules, and enzyme leaching from the support using acetate and MES buffers was below 10 mg/g.