Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mathur, Anshu

  • Google
  • 1
  • 4
  • 18

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Bioethanol production potential of a novel thermophilic isolate Thermoanaerobacter sp. DBT-IOC-X2 isolated from Chumathang hot spring18citations

Places of action

Chart of shared publication
Gupta, Ravi
1 / 2 shared
Tuli, Deepak
1 / 1 shared
Barrow, Colin
1 / 9 shared
Singh, Nisha
1 / 4 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Gupta, Ravi
  • Tuli, Deepak
  • Barrow, Colin
  • Singh, Nisha
OrganizationsLocationPeople

article

Bioethanol production potential of a novel thermophilic isolate Thermoanaerobacter sp. DBT-IOC-X2 isolated from Chumathang hot spring

  • Gupta, Ravi
  • Tuli, Deepak
  • Barrow, Colin
  • Singh, Nisha
  • Mathur, Anshu
Abstract

<p>Dilute acid pretreatment of biomass generates enormous amount of hydrolysate (rich in inhibitors and pentose sugars), that remains unutilized for bioethanol production due to inadequacy of efficient C<sub>5</sub>-fermenting organisms. In this study, a predominantly pentose fermenting extremely thermophilic bacterium strain DBT-IOC-X2, pertaining to the genus Thermoanaerobacter was isolated from Himalayan hot spring. Batch experiments indicated substantial inhibitor resistance (2 g dm<sup>−3</sup>for furfural, 5-HMF, and acetic acid), substrate tolerance (∼15 g dm<sup>−3</sup>), co-sugar fermentation ability (co-production ethanol yield of 0.29 g/g), and high ethanol yield (83.57% and 91.12% of the theoretical maximum from 5 g dm<sup>−3</sup>glucose and xylose, respectively) by the bacterium at 70 °C and pH 8.0. Here, bioethanol production process was developed using pre-treated rice straw hydrolysate (PRSH) as low-cost agro-waste and 83.47% of the total sugar conversion was obtained. This study shows that Thermoanaerobacter sp. DBT-IOC-X2 could utilize diluted PRSH efficiently to improve the overall cost-effectiveness of biomass processing to bioethanol.</p>

Topics
  • experiment
  • fermentation