People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Szabo, Peter
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2020Effect of Crystallinity on Water Vapor Sorption, Diffusion, and Permeation of PLA-Based Nanocompositescitations
- 2020Effect of Crystallinity on Water Vapor Sorption, Diffusion, and Permeation of PLA-Based Nanocompositescitations
- 2019Impact of thermal processing or solvent casting upon crystallization of PLA nanocellulose and/or nanoclay compositescitations
- 2018Modelling of rheological properties in polystyrene with long-chain branching
- 2016Hybrid poly(lactic acid)/nanocellulose/nanoclay composites with synergistically enhanced barrier properties and improved thermomechanical resistancecitations
- 2016Hybrid poly(lactic acid)/nanocellulose/nanoclay composites with synergistically enhanced barrier properties and improved thermomechanical resistancecitations
- 2016A comparison of partially acetylated nanocellulose, nanocrystalline cellulose, and nanoclay as fillers for high-performance polylactide nanocompositescitations
- 2015Enhancement of dielectric permittivity by incorporating PDMS-PEG multiblock copolymers in silicone elastomerscitations
- 2015Enhancement of dielectric permittivity by incorporating PDMS-PEG multiblock copolymers in silicone elastomerscitations
- 2015Microthrix parvicella abundance associates with activated sludge settling velocity and rheology - Quantifying and modelling filamentous bulkingcitations
- 2015Nanocellulose fibers applied in PLA composites for food packaging applications
- 2015Enhancing relative permittivity by incorporating PDMS-PEG multi block copolymers in binary polymer blends
- 2015Enhancing relative permittivity by incorporating PDMS-PEG multi block copolymers in binary polymer blends
- 2015Enhancing relative permittivity by incorporating PDMS-PEG multiblock copolymers in binary polymer blends
- 2015Enhancing relative permittivity by incorporating PDMS-PEG multiblock copolymers in binary polymer blends
- 2015A soft and conductive PDMS-PEG block copolymer as a compliant electrode for dielectric elastomers
- 2015Improving dielectric permittivity by incorporating PDMS-PEG block copolymer into PDMS network
- 2015Improving dielectric permittivity by incorporating PDMS-PEG block copolymer into PDMS network
- 2014Properties of slurries made of fast pyrolysis oil and char or beech woodcitations
- 2014Improving dielectric permittivity by incorporating PDMS-PEG block copolymer into PDMS network
- 2014Improving dielectric permittivity by incorporating PDMS-PEG block copolymer into PDMS network
- 2012Constant force extensional rheometry of polymer solutionscitations
- 2007Computational modeling of concrete flow:General overviewcitations
- 2005Topas Based Lab-on-a-chip Microsystems Fabricated by Thermal Nanoimprint Lithographycitations
- 2005An Investigation on Rheology of Peroxide Cross-linking of Low Density Polyethylene
- 2004Nanoimprint lithography in the cyclic olefin copolymer, Topas, a highly ultraviolet-transparent and chemically resistant thermoplastcitations
- 2004Axi-Symmetric Simulation of the Slump Flow Test for Self-Compacting
- 2003Rheological behaviour of polyethylene with peroxide crosslinking agent. Ismaeil Ghasemi, Peter Szabo and Henrik Koblitz Rasmussen
Places of action
Organizations | Location | People |
---|
article
Properties of slurries made of fast pyrolysis oil and char or beech wood
Abstract
The properties of slurries made of pyrolysis oil mixed with wood, char or ground char were investigated with respect to phase transitions, rheological properties, elemental compositions, and energy density. Also the pumping properties of the slurries were investigated at temperatures of 25, 40 and 60 C and solid loadings from 0 to 20 wt%. The phase transitions of the wood slurry samples were observed at lower solid loadings compared to the char slurry samples. The apparent viscosity of the slurry samples was found to be<br/>considerably impacted by solid loading (0e20 wt%) and temperature (25e60 C), especially in the phase transition region. The slurry viscosities with 20 wt% char loading, 20 wt% ground char loading and 15 wt% wood loading (at a shear rate of 100 s1) are 0.7, 1.0 and 1.7 Pa.s, respectively at 60 C and these values increases 1.2e1.4 times at 40 C and 3e4 times at 25 C. The wood, char and ground char slurry samples with 5e20 wt% solid loading obtain a volumetric energy density of 21e23 GJ/m3. The slurry sample with 20 wt% ground char having a d80 of 118 mm was pumped successfully into a pressurized chamber (0e6 bar) while plugging appeared when the slurry samples with 15 wt% char having a d80 of 276 mm was pumped into the pressurized chamber.