People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ahrenfeldt, Jesper
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2023Influence of wood pellets properties on their grinding performancecitations
- 2019From wood chips to pellets to milled pellets: The mechanical processing pathway of Austrian pine and European beechcitations
- 2017Full-scale Milling Tests of Wood Pellets for Combustion in a Suspension-Fired Power Plant Boiler
- 2017Changes imposed by pyrolysis, thermal gasification and incineration on composition and phosphorus fertilizer quality of municipal sewage sludgecitations
- 2016Closing the Loop - Utilization of Secondary Resources by Low Temperature Thermal Gasification
- 2014Kinetic model for torrefaction of wood chips in a pilot-scale continuous reactorcitations
- 2012Fuel Pellets from Wheat Straw: The Effect of Lignin Glass Transition and Surface Waxes on Pelletizing Propertiescitations
- 2012Changes of chemical and mechanical behavior of torrefied wheat strawcitations
- 2012Quality effects caused by torrefaction of pellets made from Scots pinecitations
- 2011Pelletizing properties of torrefied sprucecitations
- 2007High temperature electrolyte supported Ni-GDC/YSZ/LSM SOFC operation on two-stage Viking gasifier product gascitations
Places of action
Organizations | Location | People |
---|
article
Changes of chemical and mechanical behavior of torrefied wheat straw
Abstract
The purpose of the study was to investigate the influence of torrefaction on the grindability of wheat straw. Straw samples were torrefied at temperatures between 200 °C and 300 °C and with residence times between 0.5 and 3 h. Spectroscopic information obtained from ATR-FTIR indicated that below 200 °C there was no obvious structural change of the wheat straw. At 200–250 °C hemicelluloses started to decompose and were totally degraded when torrefied at 300 °C for 2 h, while cellulose and lignin began to decompose at about 270–300 °C. Tensile failure strength and strain energy of oven dried wheat straw and torrefied wheat straw showed a clear reduction with increasing torrefaction temperature. In addition, Hardgrove Grindability Index (HGI) of wheat straw torrefied at different conditions was determined on a standard Hardgrove grinder. Both results showed an improvement of grindability in the torrefaction temperature range 250–300 °C, which can be well explained by the findings from FTIR analysis. At a torrefaction temperature of 260 °C and with a residence time of 2 h, wheat straw samples produced similar HGI values as coal (RUKUZN) with 0% moisture content. Under this condition, the Anhydrous Weight Loss (AWL%) of the wheat straw sample was 30% on dry and ash free basis (daf), and the higher heating value of the torrefied wheat straw was 24.2 MJ kg−1 (daf). The energy loss compared to the original material was 15% (daf).