People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dawson, Jonathan
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2023Branched copolymer surfactants impart thermoreversible gelation to LAPONITE® gels †
- 2023Branched copolymer surfactants impart thermoreversible gelation to LAPONITE® gels
- 2022Determination of protoplast growth properties using quantitative single-cell tracking analysiscitations
- 2021Nanocomposite clay-based bioinks for skeletal tissue engineeringcitations
- 2020Growth‐factor free multicomponent nanocomposite hydrogels that stimulate bone formationcitations
- 2020Bisphosphonate nanoclay edge-site interactions facilitate hydrogel self-assembly and sustained growth factor localizationcitations
- 2020Nanoclay-polyamine composite hydrogel for topical delivery of nitric oxide gas via innate gelation characteristics of laponitecitations
- 2020Nanoclay-polyamine composite hydrogel for topical delivery of nitric oxide gas via innate gelation characteristics of laponitecitations
- 2020Nanoclay-based 3D printed scaffolds promote vascular ingrowth ex vivo and generate bone mineral tissue in vitro and in vivo
- 2019Printing bone in a gel: using nanocomposite bioink to print functionalised bone scaffoldscitations
- 2019Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinkscitations
- 2018Clay nanoparticles for regenerative medicine and biomaterial designcitations
- 2013A tissue engineering strategy for the treatment of avascular necrosis of the femoral headcitations
Places of action
Organizations | Location | People |
---|
article
Clay nanoparticles for regenerative medicine and biomaterial design
Abstract
Clay nanoparticles, composites and hydrogels are emerging as a new class of biomaterial with exciting potential for tissue engineering and regenerative medicine applications. Clay particles have been extensively explored in polymeric nanocomposites for self-assembly and enhanced mechanical properties as well as for their potential as drug delivery modifiers. In recent years, a cluster of studies have explored cellular interactions with clay nanoparticles alone or in combination with polymeric matrices. These pioneering studies have suggested new and unforeseen utility for certain clays as bioactive additives able to enhance cellular functions including adhesion, proliferation and differentiation, most notably for osteogenesis. This review examines the recent literature describing the potential effects of clay-based nanomaterials on cell function and examines the potential role of key clay physicochemical properties in influencing such interactions and their exciting possibilities for regenerative medicine.