People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mohn, Dirk
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2022Advantages of nanoscale bioactive glass as inorganic filler in alginate hydrogels for drug delivery and biofabricationcitations
- 2021Polymerization and shrinkage stress formation of experimental resin composites doped with nano- vs. micron-sized bioactive glasses
- 2020Bioactivity and Physico-Chemical Properties of Dental Composites Functionalized with Nano- vs. Micro-Sized Bioactive Glasscitations
- 2019Modification of silicone elastomers with Bioglass 45S5® increases in ovo tissue biointegrationcitations
- 2016Incorporation of particulate bioactive glasses into a dental root canal sealer
- 2012Nanocomposites of high-density polyethylene with amorphous calcium phosphate: in vitro biomineralization and cytocompatibility of human mesenchymal stem cells
- 2010Polymer/bioactive glass nanocomposites for biomedical applications. A Reviewcitations
- 2010Poly(3-hydroxybutyrate) multifunctional composite scaffolds for tissue engineering applications.citations
- 2008Comparison of nanoscale and microscale bioactive glass on the properties of P(3HB)/Bioglass composites.citations
Places of action
Organizations | Location | People |
---|
article
Poly(3-hydroxybutyrate) multifunctional composite scaffolds for tissue engineering applications.
Abstract
Poly(3-hydroxybutyrate) (P(3HB)) foams exhibiting highly interconnected porosity (85% porosity) were prepared using a unique combination of solvent casting and particulate leaching techniques by employing commercially available sugar cubes as porogen. Bioactive glass (BG) particles of 45S5 Bioglass grade were introduced in the scaffold microstructure, both in micrometer ((m-BG), <5 microm) and nanometer ((n-BG), 30 nm) sizes. The in vitro bioactivity of the P(3HB)/BG foams was confirmed within 10 days of immersion in simulated body fluid and the foams showed high level of protein adsorption. The foams interconnected porous microstructure proved to be suitable for MG-63 osteoblast cell attachment and proliferation. The foams implanted in rats as subcutaneous implants resulted in a non-toxic and foreign body response after one week of implantation. In addition to showing bioactivity and biocompatibility, the P(3HB)/BG composite foams also exhibited bactericidal properties, which was tested on the growth of Staphylococcus aureus. An attempt was made at developing multifunctional scaffolds by incorporating, in addition to BG, selected concentrations of Vitamin E or/and carbon nanotubes. P(3HB) scaffolds with multifunctionalities (viz. bactericidal, bioactive, electrically conductive, antioxidative behaviour) were thus produced, which paves the way for next generation of advanced scaffolds for bone tissue engineering.