People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Postma, Almar
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023Exploiting NIR light mediated Surface-Initiated PhotoRAFT polymerization for orthogonal control polymer brushes and facile post-modification of complex architecture through opaque barrierscitations
- 2020Polymerized Ionic Liquid Block Copolymer Electrolytes for All-Solid-State Lithium-Metal Batteriescitations
- 2020Lipid Nanodiscs via Ordered Copolymerscitations
- 2018Optimisation of grafting of low fouling polymers from three-dimensional scaffoldscitations
- 2016Tannic Acid and Cholesterol-Dopamine as Building Blocks in Composite Coatings for Substrate-Mediated Drug Deliverycitations
- 2016Tannic Acid and Cholesterol-Dopamine as Building Blocks in Composite Coatings for Substrate-Mediated Drug Deliverycitations
- 2013Thermally cross-linkable copolymer and its evaluation as a hole transport layer in organic light-emitting diode devicescitations
- 2011Poly(vinyl alcohol) physical hydrogels: Noncryogenic stabilization allows nano- and microscale materials designcitations
- 2009Cholesterol-mediated anchoring of enzyme-loaded liposomes within disulfide-stabilized polymer carrier capsulescitations
Places of action
Organizations | Location | People |
---|
article
Cholesterol-mediated anchoring of enzyme-loaded liposomes within disulfide-stabilized polymer carrier capsules
Abstract
<p>Polymer capsules containing multiple liposomes, termed capsosomes, are a promising new concept toward the design of artificial cells. Herein, we report on the fundamental aspects underpinning the assembly of capsosomes. A stable and high loading of intact liposomal cargo into a polymer film was achieved by non-covalently sandwiching the liposomes between a tailor-made cholesterol-modified poly(l-lysine) (PLL<sub>c</sub>) precursor layer and a poly(methacrylic acid)-co-(cholesteryl methacrylate) (PMA<sub>c</sub>) capping layer. The film assembly, optimized on planar surfaces, was successfully transferred onto colloidal substrates, and a polymer membrane was subsequently assembled by the alternating adsorption of poly(N-vinyl pyrrolidone) (PVP) and thiol-modified poly(methacrylic acid) (PMA<sub>SH</sub>) onto the pre-adsorbed layer of liposomes. Upon removal of the silica template, stable capsosomes encapsulating the enzyme luciferase or β-lactamase within their liposomal sub-compartments were obtained at both assembly (pH 4) and physiological conditions (pH 7.4). Excellent retention of the liposomes and the enzymatic cargo within the polymer carrier capsules was observed for up to 14 days. These engineered capsosomes are particularly attractive as autonomous microreactors, which can be utilized to repetitively add smaller reactants to cause successive distinct reactions within the capsosomes and simultaneously release the products to the surrounding environment, bringing these systems one step closer toward constructing artificial cells.</p>