People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zreiqat, Hala
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Unraveling the influence of channel size and shape in 3D printed ceramic scaffolds on osteogenesiscitations
- 2024Engineering antibacterial bioceramicscitations
- 2023Design and evaluation of 3D-printed Sr-HT-Gahnite bioceramic for FDA regulatory submissioncitations
- 2023Discovering an unknown territory using atom probe tomographycitations
- 2021Redefining architectural effects in 3D printed scaffolds through rational design for optimal bone tissue regenerationcitations
- 2021Personalized Baghdadite scaffoldscitations
- 2021Highly substituted calcium silicates 3D printed with complex architectures to produce stiff, strong and bioactive scaffolds for bone regenerationcitations
- 2021Development of a bioactive and radiopaque bismuth doped baghdadite ceramic for bone tissue engineeringcitations
- 2020On design for additive manufacturing (DAM) parameter and its effects on biomechanical properties of 3D printed ceramic scaffoldscitations
- 2016Efficacy of novel synthetic bone substitutes in the reconstruction of large segmental bone defects in sheep tibiaecitations
- 2016Design and Fabrication of 3D printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defectscitations
- 2015Micro-poro-elasticity of baghdadite-based bone tissue engineering scaffolds: A unifying approach based on ultrasonics, nanoindentation, and homogenization theorycitations
- 2015Micro-poro-elasticity of baghdadite-based bone tissue engineering scaffolds:A unifying approach based on ultrasonics, nanoindentation, and homogenization theory
- 2014Micro-elasticity of porous ceramic baghdadite
- 2010The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL compositescitations
- 2009The effect of mesoporous bioactive glass on the physiochemical, biological and drug-release properties of poly(dl-lactide-co-glycolide) filmscitations
Places of action
Organizations | Location | People |
---|
article
The effect of mesoporous bioactive glass on the physiochemical, biological and drug-release properties of poly(dl-lactide-co-glycolide) films
Abstract
<p>Poly(lactide-co-glycolide) (PLGA) has been widely used for bone tissue regeneration. However, it lacks hydrophilicity, bioactivity and sufficient mechanical strength and its acidic degradation by-products can lead to pH decrease in the vicinity of the implants. Mesoporous bioactive glass (MBG) with highly ordered structure (pore size 2-50 nm) possesses higher bioactivity than non-mesoporous bioactive glass (BG). The aim of this study is to investigate the effect of MBG on the mechanical strength, in vitro degradation, bioactivity, cellular response and drug release of PLGA films and optimize their physicochemical, biological and drug-delivery properties for bone tissue engineering application. The surface and inner microstructure, mechanical strength and surface hydrophilicity of MBG/PLGA and BG/PLGA films were tested. Results indicated that MBG or BG was uniformly dispersed in the PLGA films. The incorporation of MBG into PLGA films significantly improved their tensile strength, modulus and surface hydrophilicity. MBG/PLGA resulted in an enhanced mechanical strength, in vitro degradation (water absorbance, weight loss and ions release), apatite-formation ability and pH stability in simulated body fluids (SBF), compared to BG/PLGA. MBG/PLGA and BG/PLGA films enhanced human osteoblastic-like cells (HOBs) attachment, spreading and proliferation compared to PLGA. HOBs differentiation was significantly upregulated when cells were cultured on 30 MBG/PLGA for 14 days, compared to 30 BG/PLGA. MBG/PLGA enhanced the accumulative release of dexamethazone (DEX) at early stages (0-200 h) compared to BG/PLGA, however, after 200 h, DEX-release rates for MBG/PLGA was slower than that of BG/PLGA. The contents of MBG in PLGA films can control the amount of DEX released. Taken together, MBG/PLGA films possessed excellent physicochemical, biological and drug-release properties, indicating their potential application for bone tissue engineering by designing 3D scaffolds according to their corresponding compositions.</p>