People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hauschka, Peter V.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Effects of soluble cobalt and cobalt incorporated into calcium phosphate layers on osteoclast differentiation and activation
Abstract
<p>Metal ions Originating from mechanical debris and Corrosive wear of prosthetic implant alloys accumulate in peri-implant soft tissues, bone mineral, and body fluids. Eventually, metal ions such as cobalt (II) (Co2+) which is a major component of cobalt-chromium-based implant alloys and a known activator of osteolysis, are incorporated into the mineral phase of bone. We hypothesize that the accumulation of CO2+ in the mineral could directly activate osteolysis by targeting osteoclasts. To test this hypothesis, we coated tissue culture plastic with a thin layer of calcium phosphate (CaP) containing added traces Co2+ thereby mimicking the bone mineral accumulation of Co2+. Murine bone marrow osteoclasts formed in the presence of M-CSF and RANKL were cultured on these surfaces to examine the effects of Co2+ on osteoclast formation and resorptive activity. Treatment conditions with Co2+ involved incorporation into the Cap layer, adsorption to the mineral Surface, or addition to Culture media. Micromolar concentrations of Co2+ delivered to developing osteoclast Precursors by all 3 routes increased both osteoclast differentiation and resorptive function. Compared to CaP layers without Co2+, we observed a maximal 75% increase in osteoclast numbers and a 2.3- to 2.7-fold increase in mineral resorption from the tissue culture wells containing 0.1 mu m Co2+ and 0.1 - 10 mu m Co2+, respectively. These concentrations are well within the range found in peri-implant tissues in vivo. This direct effect of Co2+ on osteoclasts appears to act independently of the particulate phagocytosis/inflammation-mdiated pathways, thus enhancing osteolysis and aseptic implant loosening. (C) 2008 Elsevier Ltd. All rights reserved.</p>