People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Habibovic, Pamela
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (31/31 displayed)
- 2024Extracellular matrix mimetic supramolecular hydrogels reinforced with covalent crosslinked mesoporous silica nanoparticles
- 2024Optimization of a tunable process for rapid production of calcium phosphate microparticles using a droplet-based microfluidic platformcitations
- 2023Polymer film-based microwell array platform for long-term culture and research of human bronchial organoidscitations
- 2023Decoupling the role of chemistry and microstructure in hMSCs response to an osteoinductive calcium phosphate ceramiccitations
- 2023Matrix metalloproteinase degradable, in situ photocrosslinked nanocomposite bioinks for bioprinting applicationscitations
- 2022Sustained local ionic homeostatic imbalance caused by calcification modulates inflammation to trigger heterotopic ossificationcitations
- 2022Assessment of Cell-Material Interactions in Three Dimensions through Dispersed Coaggregation of Microsized Biomaterials into Tissue Spheroidscitations
- 2021Biomimetic Mechanically Strong One-Dimensional Hydroxyapatite/Poly(d,l-lactide) Composite Inducing Formation of Anisotropic Collagen Matrixcitations
- 2021Cobalt-containing calcium phosphate induces resorption of biomineralized collagen by human osteoclastscitations
- 2021Biodegradable Elastic Sponge from Nanofibrous Biphasic Calcium Phosphate Ceramic as an Advanced Material for Regenerative Medicinecitations
- 20213D porous Ti6Al4V-beta-tricalcium phosphate scaffolds directly fabricated by additive manufacturingcitations
- 2021Injectable, self-healing mesoporous silica nanocomposite hydrogels with improved mechanical propertiescitations
- 2020Intestinal Organoid Culture in Polymer Film-Based Microwell Arrayscitations
- 2017Development of a microfluidic platform integrating high-resolution microstructured biomaterials to study cell-material interactionscitations
- 2017Deconvoluting the Bioactivity of Calcium Phosphate-Based Bone Graft Substitutescitations
- 2017Deconvoluting the Bioactivity of Calcium Phosphate-Based Bone Graft Substitutes:Strategies to Understand the Role of Individual Material Propertiescitations
- 2017Enhancing regenerative approaches with nanoparticlescitations
- 2016The Effects of Crystal Phase and Particle Morphology of Calcium Phosphates on Proliferation and Differentiation of Human Mesenchymal Stromal Cellscitations
- 2016Independent effects of the chemical and microstructural surface properties of polymer/ceramic composites on proliferation and osteogenic differentiation of human MSCscitations
- 2016Independent effects of the chemical and microstructural surface properties of polymer/ceramic composites on proliferation and osteogenic differentiation of human MSCscitations
- 2015Elucidating the individual effects of calcium and phosphate ions on hMSCs by using composite materialscitations
- 2010Biomimetic calcium phosphate coatings on recombinant spider silk fibrescitations
- 2009Effects of soluble cobalt and cobalt incorporated into calcium phosphate layers on osteoclast differentiation and activationcitations
- 2009Angiogenesis in Calcium Phosphate Scaffolds by Inorganic Copper Ion Releasecitations
- 2008Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implantscitations
- 2008Comparative in vivo study of six hydroxyapatite-based bone graft substitutescitations
- 2007Biological performance in goats of a porous titanium alloy-biphasic calcium phosphate compositecitations
- 2006Influence of physico-chemical properties, macro- and microstructure on osteoinductive potential of calcium-phosphate ceramicscitations
- 2006Relevance of osteoinductive biomaterials in critical-sized orthotopic defectcitations
- 20053D microenvironment as essential element for osteoinduction by biomaterialscitations
- 2004Influence of octacalcium phosphate coating on osteoinductive properties of biomaterialscitations
Places of action
Organizations | Location | People |
---|
article
Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants
Abstract
<p>Rapid prototyping is a valuable implant production tool that enables the investigation of individual geometric parameters, such as shape, porosity, pore size and permeability, on the biological performance of synthetic bone graft substitutes. In the present study, we have employed low-temperature direct 3D printing to produce brushite and monetite implants with different geometries. Blocks predominantly consisting of brushite with channels either open or closed to the exterior were implanted on the decorticated lumbar transverse processes of goats for 12 weeks. In addition, similar blocks with closed channel geometry, consisting of either brushite or monetite were implanted intramuscularly. The design of the channels allowed investigation of the effect of macropore geometry (open and closed pores) and osteoinduction on bone formation orthotopically. Intramuscular implantation resulted in bone formation within the channels of both monetite and brushite, indicating osteoinductivity of these resorbable materials. Inside the blocks mounted on the transverse processes, initial channel shape did not seem to significantly influence the final amount of formed bone and osteoinduction was suggested to contribute to bone formation.</p>