Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bassett, David C.

  • Google
  • 5
  • 36
  • 641

University of Birmingham

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2016A correlative spatiotemporal microscale study of calcium phosphate formation and transformation within an alginate hydrogel matrix25citations
  • 2015Elucidating the individual effects of calcium and phosphate ions on hMSCs by using composite materials63citations
  • 2014Osseointegration of dental implants in 3D-printed synthetic onlay grafts customized according to bone metabolic activity in recipient site93citations
  • 2011Biocompatibility of magnesium phosphate minerals and their stability under physiological conditions160citations
  • 2008Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants300citations

Places of action

Chart of shared publication
Ucar, Seniz
1 / 2 shared
Strand, Berit L.
1 / 1 shared
Bjørnøy, Sindre H.
1 / 1 shared
Andreassen, Jens Petter
1 / 1 shared
Sikorski, Pawel
1 / 3 shared
Othman, Z.
1 / 1 shared
Barralet, Jake E.
3 / 4 shared
Barralet, J. E.
1 / 1 shared
Habibovic, Pamela
2 / 31 shared
Habibovic, P.
1 / 5 shared
Reis, Rui L.
1 / 189 shared
Rodrigues, A. I.
1 / 10 shared
Danoux, Charlène B. S. S.
1 / 1 shared
Blitterswijk, Clemens A. Van
2 / 2 shared
Rodrigues, Ana I.
1 / 1 shared
Othman, Ziryan
1 / 1 shared
Reis, Rui Luís
1 / 1359 shared
Van Blitterswijk, C. A.
1 / 10 shared
Bassett, D. C.
1 / 2 shared
Danoux, Cbss
1 / 1 shared
Al-Abedalla, Khadijeh
1 / 1 shared
Torres, Jesus
1 / 1 shared
Gbureck, Uwe
2 / 16 shared
Tamimi, Faleh
1 / 1 shared
Alkhraisat, Mohammad H.
1 / 1 shared
Lopez-Cabarcos, Enrique
1 / 1 shared
Barralet, Je
1 / 1 shared
Flynn, A.
1 / 1 shared
Komarova, Sv
1 / 1 shared
Ibasco, S.
1 / 1 shared
Gbureck, U.
1 / 1 shared
Nihouannen, D. Le
1 / 2 shared
Wright, Adrian
1 / 10 shared
Knowles, J.
1 / 3 shared
Tamimi, F.
1 / 1 shared
Doillon, Charles J.
1 / 2 shared
Chart of publication period
2016
2015
2014
2011
2008

Co-Authors (by relevance)

  • Ucar, Seniz
  • Strand, Berit L.
  • Bjørnøy, Sindre H.
  • Andreassen, Jens Petter
  • Sikorski, Pawel
  • Othman, Z.
  • Barralet, Jake E.
  • Barralet, J. E.
  • Habibovic, Pamela
  • Habibovic, P.
  • Reis, Rui L.
  • Rodrigues, A. I.
  • Danoux, Charlène B. S. S.
  • Blitterswijk, Clemens A. Van
  • Rodrigues, Ana I.
  • Othman, Ziryan
  • Reis, Rui Luís
  • Van Blitterswijk, C. A.
  • Bassett, D. C.
  • Danoux, Cbss
  • Al-Abedalla, Khadijeh
  • Torres, Jesus
  • Gbureck, Uwe
  • Tamimi, Faleh
  • Alkhraisat, Mohammad H.
  • Lopez-Cabarcos, Enrique
  • Barralet, Je
  • Flynn, A.
  • Komarova, Sv
  • Ibasco, S.
  • Gbureck, U.
  • Nihouannen, D. Le
  • Wright, Adrian
  • Knowles, J.
  • Tamimi, F.
  • Doillon, Charles J.
OrganizationsLocationPeople

article

Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants

  • Bassett, David C.
  • Gbureck, Uwe
  • Doillon, Charles J.
  • Barralet, Jake E.
  • Blitterswijk, Clemens A. Van
  • Habibovic, Pamela
Abstract

<p>Rapid prototyping is a valuable implant production tool that enables the investigation of individual geometric parameters, such as shape, porosity, pore size and permeability, on the biological performance of synthetic bone graft substitutes. In the present study, we have employed low-temperature direct 3D printing to produce brushite and monetite implants with different geometries. Blocks predominantly consisting of brushite with channels either open or closed to the exterior were implanted on the decorticated lumbar transverse processes of goats for 12 weeks. In addition, similar blocks with closed channel geometry, consisting of either brushite or monetite were implanted intramuscularly. The design of the channels allowed investigation of the effect of macropore geometry (open and closed pores) and osteoinduction on bone formation orthotopically. Intramuscular implantation resulted in bone formation within the channels of both monetite and brushite, indicating osteoinductivity of these resorbable materials. Inside the blocks mounted on the transverse processes, initial channel shape did not seem to significantly influence the final amount of formed bone and osteoinduction was suggested to contribute to bone formation.</p>

Topics
  • impedance spectroscopy
  • pore
  • permeability
  • porosity