Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ratner, Buddy D.

  • Google
  • 1
  • 4
  • 158

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2007The influence of surface energy on competitive protein adsorption on oxidized NiTi surfaces158citations

Places of action

Chart of shared publication
Aparicio, Conrado
1 / 42 shared
Planell, Josep A.
1 / 3 shared
Michiardi, Alexandra
1 / 1 shared
Gil, Javier
1 / 7 shared
Chart of publication period
2007

Co-Authors (by relevance)

  • Aparicio, Conrado
  • Planell, Josep A.
  • Michiardi, Alexandra
  • Gil, Javier
OrganizationsLocationPeople

article

The influence of surface energy on competitive protein adsorption on oxidized NiTi surfaces

  • Aparicio, Conrado
  • Planell, Josep A.
  • Ratner, Buddy D.
  • Michiardi, Alexandra
  • Gil, Javier
Abstract

<p>NiTi shape memory alloy surfaces, untreated, and oxidized by a new oxidation treatment (OT) in order to obtain a Ni-free surface, have been compared in terms of surface energy and protein adsorption behavior. The polar and dispersive components of the surface energy have been determined. A competitive adsorption process between fibronectin and albumin has been carried out by <sup>125</sup>I-radiolabeling. Moreover, the adhesion strength between both proteins and NiTi surfaces has been evaluated by performing an elution test. The results show that the OT treatment enhances the hydrophilic character of NiTi surfaces by significantly increasing the polar component of their surface energy. Moreover, the OT treatment increases the amount of fibronectin and albumin adsorbed. It also increases the fibronectin affinity for NiTi surfaces. The elution test results could suggest a conformational change of fibronectin as a function of chemical composition of NiTi material and of surface treatment. Finally, a linear correlation between the amount of adsorbed albumin and the polar component of the surface energy of NiTi surfaces has been demonstrated. This work indicates that the OT treatment has an influence on the surface energy value of NiTi materials, which in turn influences the protein adsorption process.</p>

Topics
  • surface
  • strength
  • chemical composition
  • surface energy
  • elution