Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Barbosa, M. A.

  • Google
  • 2
  • 6
  • 220

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2006The uptake of titanium ions by hydroxyapatite particles-structural changes and possible mechanisms128citations
  • 2005In vitro degradation behavior of a novel bioresorbable composite material based on PLA and a soluble CaP glass92citations

Places of action

Chart of shared publication
Gibson, Iain
1 / 23 shared
Ribeiro, C. C.
1 / 1 shared
Barrias, C. C.
1 / 2 shared
Navarro, M.
1 / 28 shared
Planell, J. A.
1 / 93 shared
Ginebra, Mp
1 / 289 shared
Chart of publication period
2006
2005

Co-Authors (by relevance)

  • Gibson, Iain
  • Ribeiro, C. C.
  • Barrias, C. C.
  • Navarro, M.
  • Planell, J. A.
  • Ginebra, Mp
OrganizationsLocationPeople

article

The uptake of titanium ions by hydroxyapatite particles-structural changes and possible mechanisms

  • Gibson, Iain
  • Barbosa, M. A.
  • Ribeiro, C. C.
Abstract

<p>In order to understand the effect of titanium ions oil the molecular structure of hydroxyapatite (HAp), HAp powders were incubated in solutions with different titanium concentrations. After incubation, the powders obtained were analysed using different techniques, namely X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), differential thermal analysis (DTA), X-ray photoelectron spectroscopy (XPS), and energy dispersive spectroscopy (EDS). The results suggest that, depending on the concentration of titanium in solution, two different mechanisms of interaction with HAp occur. For concentrations equal to or smaller than 200 ppm, the titanium uptake by the solid seems to be primarily due to incorporation in the lattice. For higher concentrations, a dissolution-precipitation process seems to occur, leading to formation of a titanium phosphate compound. (C) 2005 Elsevier Ltd. All rights reserved.</p>

Topics
  • compound
  • x-ray diffraction
  • x-ray photoelectron spectroscopy
  • precipitation
  • titanium
  • Energy-dispersive X-ray spectroscopy
  • Fourier transform infrared spectroscopy
  • differential thermal analysis
  • molecular structure