People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Habibovic, Pamela
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (31/31 displayed)
- 2024Extracellular matrix mimetic supramolecular hydrogels reinforced with covalent crosslinked mesoporous silica nanoparticles
- 2024Optimization of a tunable process for rapid production of calcium phosphate microparticles using a droplet-based microfluidic platformcitations
- 2023Polymer film-based microwell array platform for long-term culture and research of human bronchial organoidscitations
- 2023Decoupling the role of chemistry and microstructure in hMSCs response to an osteoinductive calcium phosphate ceramiccitations
- 2023Matrix metalloproteinase degradable, in situ photocrosslinked nanocomposite bioinks for bioprinting applicationscitations
- 2022Sustained local ionic homeostatic imbalance caused by calcification modulates inflammation to trigger heterotopic ossificationcitations
- 2022Assessment of Cell-Material Interactions in Three Dimensions through Dispersed Coaggregation of Microsized Biomaterials into Tissue Spheroidscitations
- 2021Biomimetic Mechanically Strong One-Dimensional Hydroxyapatite/Poly(d,l-lactide) Composite Inducing Formation of Anisotropic Collagen Matrixcitations
- 2021Cobalt-containing calcium phosphate induces resorption of biomineralized collagen by human osteoclastscitations
- 2021Biodegradable Elastic Sponge from Nanofibrous Biphasic Calcium Phosphate Ceramic as an Advanced Material for Regenerative Medicinecitations
- 20213D porous Ti6Al4V-beta-tricalcium phosphate scaffolds directly fabricated by additive manufacturingcitations
- 2021Injectable, self-healing mesoporous silica nanocomposite hydrogels with improved mechanical propertiescitations
- 2020Intestinal Organoid Culture in Polymer Film-Based Microwell Arrayscitations
- 2017Development of a microfluidic platform integrating high-resolution microstructured biomaterials to study cell-material interactionscitations
- 2017Deconvoluting the Bioactivity of Calcium Phosphate-Based Bone Graft Substitutescitations
- 2017Deconvoluting the Bioactivity of Calcium Phosphate-Based Bone Graft Substitutes:Strategies to Understand the Role of Individual Material Propertiescitations
- 2017Enhancing regenerative approaches with nanoparticlescitations
- 2016The Effects of Crystal Phase and Particle Morphology of Calcium Phosphates on Proliferation and Differentiation of Human Mesenchymal Stromal Cellscitations
- 2016Independent effects of the chemical and microstructural surface properties of polymer/ceramic composites on proliferation and osteogenic differentiation of human MSCscitations
- 2016Independent effects of the chemical and microstructural surface properties of polymer/ceramic composites on proliferation and osteogenic differentiation of human MSCscitations
- 2015Elucidating the individual effects of calcium and phosphate ions on hMSCs by using composite materialscitations
- 2010Biomimetic calcium phosphate coatings on recombinant spider silk fibrescitations
- 2009Effects of soluble cobalt and cobalt incorporated into calcium phosphate layers on osteoclast differentiation and activationcitations
- 2009Angiogenesis in Calcium Phosphate Scaffolds by Inorganic Copper Ion Releasecitations
- 2008Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implantscitations
- 2008Comparative in vivo study of six hydroxyapatite-based bone graft substitutescitations
- 2007Biological performance in goats of a porous titanium alloy-biphasic calcium phosphate compositecitations
- 2006Influence of physico-chemical properties, macro- and microstructure on osteoinductive potential of calcium-phosphate ceramicscitations
- 2006Relevance of osteoinductive biomaterials in critical-sized orthotopic defectcitations
- 20053D microenvironment as essential element for osteoinduction by biomaterialscitations
- 2004Influence of octacalcium phosphate coating on osteoinductive properties of biomaterialscitations
Places of action
Organizations | Location | People |
---|
article
3D microenvironment as essential element for osteoinduction by biomaterials
Abstract
<p>In order to unravel the mechanism of osteoinduction by biomaterials, in this study we investigated the influence of the specific surface area on osteoinductive properties of two types of calcium phosphate ceramics. Different surface areas of the ceramics were obtained by varying their sintering temperatures.</p><p>Hydroxyapatite (HA) ceramic was sintered at 1150 and 1250degreesC. Biphasic calcium phosphate (BCP) ceramic, consisting of HA and beta-tricalcium phosphate (beta-TCP), was sintered at 1100, 1150 and 1200degreesC.</p><p>Changes in sintering temperature did not influence the chemistry of the ceramics; HA remained pure after sintering at different temperatures and the weight ratio of HA and beta-TCP in the BCP was independent of the temperature as well. Similarly, macroporosity of the ceramics was unaffected by the changes of the sintering temperature. However, microporosity (pore diameter < 10 mum) significantly decreased with increasing sintering temperature. In addition to the decrease of the microporosity, the crystal size increased with increasing sintering temperature. These two effects resulted in a significant decrease of the specific surface area of the ceramics with increasing sintering temperatures.</p><p>Samples of HA1150, HA1250, BCP1100, BCP1150 and BCP1200 were implanted in the back muscles of Dutch milk goats and harvested at 6 and 12 weeks post implantation. After explantation, histomorphometrical analysis was performed on all implants.</p><p>All implanted materials except HA1250 induced bone. However, large variations in the amounts of induced bone were observed between different materials and between individual animals.</p><p>Histomorphometrical results showed that the presence of micropores within macropore walls is necessary to make a material osteoinductive. We postulate that introduction of microporosity within macropores, and consequent increase of the specific surface area, affects the interface dynamics of the ceramic in such a way that relevant cells are triggered to differentiate into the osteogenic lineage. (C) 2004 Elsevier Ltd. All rights reserved.</p>