People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Yj, Kim
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Nanoemulsions prepared from mountain ginseng-mediated gold nanoparticles and silydianin increase the anti-inflammatory effects by regulating NF-κB and MAPK signaling pathways.
Abstract
In order to increase the bioavailability of mountain ginseng (MG), gold nanoparticles (MG-AuNPs) were biologically synthesized from MG extract, and an oil-in-water (O/W) nanoemulsion (SMG-AuNEs) was prepared from MG-AuNPs and a phytochemical silydianin. The physical stability of SMG-AuNEs were monitored and optimized in terms of particle size, pH value, zeta potential, and polydispersity index. The chemicostructural properties of the prepared MG-AuNPs and SMG-AuNEs were characterized using various spectrometric and microscopic analyses, such as EDX spectroscopy, FT-IR spectroscopy, and TEM. The effect of both nanomaterial samples on the anti-inflammatory activity and their underlying mechanism was compared in LPS-stimulated RAW 264.7 cells. SMG-AuNEs did not show toxic effects against RAW 264.7 macrophages, HaCaT keratinocytes, and normal dermal fibroblasts. SMG-AuNEs exhibited significantly higher inhibition of pro-inflammatory genes and proteins, including IL-1β, IL-6, and TNF-α, compared with those of MG-AuNPs and silydianin. Western blotting analysis revealed that the MAPK and NF-κB signalings were highly inhibited by SMG-AuNEs treatment. Hence, this study shows that nano-emulsification of gold nanoparticles prepared from MG is a useful method for augmenting the anti-inflammatory potential of MG. This study may serve as a foundation for using MG as a functional ingredient in anti-inflammatory agents. Our results may implicate the use of nanoemulsions to develop new anti-inflammatory products using MG.