People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Plocinski, Tomasz
Warsaw University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Optimization of the plasmonic properties of titanium nitride films sputtered at room temperature through microstructure and thickness controlcitations
- 2023On the Influence of Manufacturing Parameters on the Microstructure, Mechanical Properties and Corrosion Resistance of AISI 316L Steel Deposited by Laser Engineered Net Shaping (LENS®)citations
- 2023In vitro and in vivo degradation behavior of Mg-0.45Zn-0.45Ca (ZX00) screws for orthopedic applicationscitations
- 2023Comprehensive study upon physicochemical properties of bio-ZnO NCscitations
- 2023Consideration of a new approach to clarify the mechanism formation of AgNPs, AgNCl and AgNPs@AgNCl synthesized by biological methodcitations
- 2023In-depth analysis of the influence of bio-silica filler (Didymosphenia geminata frustules) on the properties of Mg matrix compositescitations
- 2023The combined effect of zinc and calcium on the biodegradation of ultrahigh-purity magnesium implantscitations
- 2023Crystallization of Na3VTi(PO4)2F3 glass: In situ observation of the function of distribution of relaxation times
- 2022Effect of annealing on the mechanical and corrosion properties of 316L stainless steel manufactured by laser powder bed fusioncitations
- 2021Design of SiC-Doped Piezoresistive Pressure Sensor for High-Temperature Applicationscitations
- 2021Influence of bimodal grain size distribution on the corrosion resistance of Mg–4Li–3Al–1Zn (LAZ431)citations
- 2021Effects of Composite Coatings Functionalized with Material Additives Applied on Textile Materials for Cut Resistant Protective Glovescitations
- 2018Structure and corrosion resistance of titanium oxide layers produced on NiTi alloy in low-temperature plasmacitations
- 2015Scandium functionalized carbon aerogel:Synthesis of nanoparticles and structure of a new ScOCl and properties of NaAlH4 as a function of pore sizecitations
- 2012Processing and characterization of a W–2Y material for fusion power reactorscitations
Places of action
Organizations | Location | People |
---|
article
In vitro and in vivo degradation behavior of Mg-0.45Zn-0.45Ca (ZX00) screws for orthopedic applications
Abstract
Magnesium (Mg) alloys have become a potential material for orthopedic implants due to their unnecessaryimplant removal, biocompatibility, and mechanical integrity until fracture healing. This study examined the invitro and in vivo degradation of an Mg fixation screw composed of Mg-0.45Zn-0.45Ca (ZX00, in wt.%). With ZX00human-sized implants, in vitro immersion tests up to 28 days under physiological conditions, along with electrochemicalmeasurements were performed for the first time. In addition, ZX00 screws were implanted in thediaphysis of sheep for 6, 12, and 24 weeks to assess the degradation and biocompatibility of the screws in vivo.Using scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX), microcomputedtomography (μCT), X-ray photoelectron spectroscopy (XPS), and histology, the surface and crosssectionalmorphologies of the corrosion layers formed, as well as the bone-corrosion-layer-implant interfaces,were analyzed. Our findings from in vivo testing demonstrated that ZX00 alloy promotes bone healing and theformation of new bone in direct contact with the corrosion products. In addition, the same elemental compositionof corrosion products was observed for in vitro and in vivo experiments; however, their elemental distribution andthicknesses differ depending on the implant location. Our findings suggest that the corrosion resistance wasmicrostructure-dependent. The head zone was the least corrosion-resistant, indicating that the production procedurecould impact the corrosion performance of the implant. In spite of this, the formation of new bone and noadverse effects on the surrounding tissues demonstrated that the ZX00 is a suitable Mg-based alloy for temporarybone implants.