People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Marek, Romy
University of Applied Sciences and Arts Northwestern Switzerland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
In vitro and in vivo degradation behavior of Mg-0.45Zn-0.45Ca (ZX00) screws for orthopedic applications
Abstract
Magnesium (Mg) alloys have become a potential material for orthopedic implants due to their unnecessaryimplant removal, biocompatibility, and mechanical integrity until fracture healing. This study examined the invitro and in vivo degradation of an Mg fixation screw composed of Mg-0.45Zn-0.45Ca (ZX00, in wt.%). With ZX00human-sized implants, in vitro immersion tests up to 28 days under physiological conditions, along with electrochemicalmeasurements were performed for the first time. In addition, ZX00 screws were implanted in thediaphysis of sheep for 6, 12, and 24 weeks to assess the degradation and biocompatibility of the screws in vivo.Using scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX), microcomputedtomography (μCT), X-ray photoelectron spectroscopy (XPS), and histology, the surface and crosssectionalmorphologies of the corrosion layers formed, as well as the bone-corrosion-layer-implant interfaces,were analyzed. Our findings from in vivo testing demonstrated that ZX00 alloy promotes bone healing and theformation of new bone in direct contact with the corrosion products. In addition, the same elemental compositionof corrosion products was observed for in vitro and in vivo experiments; however, their elemental distribution andthicknesses differ depending on the implant location. Our findings suggest that the corrosion resistance wasmicrostructure-dependent. The head zone was the least corrosion-resistant, indicating that the production procedurecould impact the corrosion performance of the implant. In spite of this, the formation of new bone and noadverse effects on the surrounding tissues demonstrated that the ZX00 is a suitable Mg-based alloy for temporarybone implants.