Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Čapek, Jaroslav

  • Google
  • 10
  • 53
  • 152

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2024Analysis of hydrogen in a hydrogenated, 3D-printed Ti–6Al–4V alloy by glow discharge optical emission spectroscopy: sample heating effects4citations
  • 2023A detailed mechanism of degradation behaviour of biodegradable as-ECAPed Zn-0.8Mg-0.2Sr with emphasis on localized corrosion attack13citations
  • 2023Suppression of mechanical instability in bioabsorbable ultrafine-grained Zn through in-situ stabilization by ZnO nanodispersoids6citations
  • 2022The evolution of microstructure and mechanical properties of Zn-0.8Mg-0.2Sr alloy prepared by casting and extrusion20citations
  • 2021Microstructural Evolution of a 3003 Based Aluminium Alloy during the CSET Process4citations
  • 2021Microstructure evolution and mechanical performance of ternary Zn-0.8Mg-0.2Sr (wt. %) alloy processed by equal-channel angular pressing29citations
  • 2021Influence of Ceramic Particles Character on Resulted Properties of Zinc-Hydroxyapatite/Monetite Composites11citations
  • 2021Influence of model environment complexity on corrosion mechanism of biodegradable zinc alloys26citations
  • 2020Zinc alloys as prospective materials for biodegradable medical devices1citations
  • 2020Extrusion of the biodegradable ZnMg0.8Ca0.2 alloy – The influence of extrusion parameters on microstructure and mechanical characteristics38citations

Places of action

Chart of shared publication
Weiss, Zdeněk
1 / 6 shared
Kopeček, Jaromír
1 / 10 shared
Losertová, Monika
1 / 4 shared
Ekrt, Ondřej
2 / 2 shared
Kačenka, Zdeněk
1 / 4 shared
Vojtěch, Dalibor
7 / 36 shared
Pinc, Jan
7 / 16 shared
Školáková, Andrea
4 / 9 shared
Msallamová, Šárka
1 / 4 shared
Hybášek, Vojtěch
3 / 7 shared
Vondráček, M.
1 / 7 shared
Mccarroll, I.
1 / 5 shared
Kubásek, Jiří
7 / 44 shared
Duchoň, J.
3 / 4 shared
Drahokoupil, J.
1 / 48 shared
Hývl, M.
1 / 3 shared
Veřtát, P.
2 / 5 shared
Ashcheulov, P.
1 / 10 shared
Banerjee, S.
1 / 11 shared
Skiba, Jacek
1 / 9 shared
Sedlackova, Eva
1 / 1 shared
Svastova, Eliska
1 / 1 shared
Ibrahim, Ahmed Mohamed Hassan
1 / 1 shared
Takacova, Martina
1 / 1 shared
Csaderova, Lucia
1 / 1 shared
Bajana, Oto
1 / 2 shared
Jr, Peter Svec
1 / 1 shared
Castro, Moara Marques De
1 / 2 shared
Balog, Martin
1 / 3 shared
Dvorský, Drahomír
2 / 18 shared
Krizik, Peter
1 / 1 shared
Molnárová, O.
1 / 11 shared
Čavojský, M.
2 / 3 shared
Straková, Markéta
2 / 3 shared
Paulin, I.
1 / 1 shared
Knapek, M.
1 / 6 shared
Godec, M.
1 / 2 shared
Nečas, David
1 / 16 shared
Hosová, Klára
3 / 11 shared
Molnárová, Orsolya
1 / 4 shared
Németh, Gergely
1 / 7 shared
Habr, Stanislav
1 / 2 shared
Málek, Přemysl
1 / 1 shared
De Prado, Esther
1 / 1 shared
Lejček, Pavel
1 / 2 shared
Průša, Filip
1 / 8 shared
Bartůněk, Vilém
1 / 4 shared
Školáková, Tereza
1 / 2 shared
Veřtát, Petr
1 / 4 shared
Fojt, Jaroslav
1 / 4 shared
Alferi, Dino
1 / 1 shared
Jiru, Jitrenka
1 / 2 shared
Drahokoupil, Jan
1 / 8 shared
Chart of publication period
2024
2023
2022
2021
2020

Co-Authors (by relevance)

  • Weiss, Zdeněk
  • Kopeček, Jaromír
  • Losertová, Monika
  • Ekrt, Ondřej
  • Kačenka, Zdeněk
  • Vojtěch, Dalibor
  • Pinc, Jan
  • Školáková, Andrea
  • Msallamová, Šárka
  • Hybášek, Vojtěch
  • Vondráček, M.
  • Mccarroll, I.
  • Kubásek, Jiří
  • Duchoň, J.
  • Drahokoupil, J.
  • Hývl, M.
  • Veřtát, P.
  • Ashcheulov, P.
  • Banerjee, S.
  • Skiba, Jacek
  • Sedlackova, Eva
  • Svastova, Eliska
  • Ibrahim, Ahmed Mohamed Hassan
  • Takacova, Martina
  • Csaderova, Lucia
  • Bajana, Oto
  • Jr, Peter Svec
  • Castro, Moara Marques De
  • Balog, Martin
  • Dvorský, Drahomír
  • Krizik, Peter
  • Molnárová, O.
  • Čavojský, M.
  • Straková, Markéta
  • Paulin, I.
  • Knapek, M.
  • Godec, M.
  • Nečas, David
  • Hosová, Klára
  • Molnárová, Orsolya
  • Németh, Gergely
  • Habr, Stanislav
  • Málek, Přemysl
  • De Prado, Esther
  • Lejček, Pavel
  • Průša, Filip
  • Bartůněk, Vilém
  • Školáková, Tereza
  • Veřtát, Petr
  • Fojt, Jaroslav
  • Alferi, Dino
  • Jiru, Jitrenka
  • Drahokoupil, Jan
OrganizationsLocationPeople

article

A detailed mechanism of degradation behaviour of biodegradable as-ECAPed Zn-0.8Mg-0.2Sr with emphasis on localized corrosion attack

  • Pinc, Jan
  • Školáková, Andrea
  • Msallamová, Šárka
  • Čapek, Jaroslav
  • Hybášek, Vojtěch
  • Vondráček, M.
  • Mccarroll, I.
  • Kubásek, Jiří
  • Duchoň, J.
  • Drahokoupil, J.
  • Hývl, M.
  • Veřtát, P.
  • Ashcheulov, P.
  • Vojtěch, Dalibor
  • Banerjee, S.
Abstract

In this study, advanced techniques such as atom probe tomography, atomic force microscopy, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy were used to determine the corrosion mechanism of the as-ECAPed Zn-0.8Mg-0.2Sr alloy. The influence of microstructural and surface features on the corrosion mechanism was investigated. Despite its significance, the surface composition before exposure is often neglected by the scientific community. The analyses revealed the formation of thin ZnO, MgO, and MgCO3 layers on the surface of the material before exposure. These layers participated in the formation of corrosion products, leading to the predominant occurrence of hydrozincite. In addition, the layers possessed different resistance to the environment, resulting in localized corrosion attacks. The segregation of Mg on the Zn grain boundaries with lower potential compared with the Zn-matrix was revealed by atom probe tomography and atomic force microscopy. The degradation process was initiated by the activity of micro-galvanic cells, specifically Zn – Mg2Zn11/SrZn13. This process led to the activity of the crevice corrosion mechanism and subsequent attack to a depth of 250 μm. The corrosion rate of the alloy determined by the weight loss method was 0.36 mm·a−1. Based on this detailed study, the degradation mechanism of the Zn-0.8Mg-0.2Sr alloy is proposed. © 2023 The Authors

Topics
  • impedance spectroscopy
  • surface
  • grain
  • x-ray photoelectron spectroscopy
  • atomic force microscopy
  • atom probe tomography
  • crevice corrosion