People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Shahbazi, Mohammad-Ali
University Medical Center Groningen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Designing of a Multifunctional 3D-Printed Biomimetic Theragenerative Aerogel Scaffold via Mussel-Inspired Chemistrycitations
- 2023Dermal Wound Healingcitations
- 2023Nanoparticles-based phototherapy systems for cancer treatmentcitations
- 2023Nanoparticles-based phototherapy systems for cancer treatment:Current status and clinical potentialcitations
- 2023Effect of poly (lactic-co-glycolic acid) polymer nanoparticles loaded with vancomycin against Staphylococcus aureus biofilmcitations
- 2023Injectable Nanocomposite Hydrogels of Gelatin-Hyaluronic Acid Reinforced with Hybrid Lysozyme Nanofibrils-Gold Nanoparticles for the Regeneration of Damaged Myocardiumcitations
- 2021Electroconductive multi-functional polypyrrole composites for biomedical applicationscitations
- 2020Directional Freeze-Castingcitations
- 2020Controlled Tyrosine Kinase Inhibitor Delivery to Liver Cancer Cells by Gate-Capped Mesoporous Silica Nanoparticlescitations
- 2019Rapid optimization of liposome characteristics using a combined microfluidics and design-of-experiment approachcitations
- 2019Silica nanoparticle surface chemistry: An important trait affecting cellular biocompatibility in two and three dimensional culture systemscitations
- 2018Conductive vancomycin-loaded mesoporous silica polypyrrole-based scaffolds for bone regenerationcitations
- 2018Conductive vancomycin-loaded mesoporous silica polypyrrole-based scaffolds for bone regenerationcitations
- 2017A Multifunctional Nanocomplex for Enhanced Cell Uptake, Endosomal Escape and Improved Cancer Therapeutic Effectcitations
- 2017Intracellular responsive dual delivery by endosomolytic polyplexes carrying DNA anchored porous silicon nanoparticlescitations
- 2016Oral hypoglycaemic effect of GLP-1 and DPP4 inhibitor based nanocomposites in a diabetic animal modelcitations
- 2015Cyclodextrin-Modified Porous Silicon Nanoparticles for Efficient Sustained Drug Delivery and Proliferation Inhibition of Breast Cancer Cellscitations
- 2015Microfluidic Nanoprecipitation of a Stimuli Responsive Hybrid Nanocomposite for Antitumoral Applications
Places of action
Organizations | Location | People |
---|
article
Nanoparticles-based phototherapy systems for cancer treatment
Abstract
Remarkable progress in phototherapy has been made in recent decades, due to its non-invasiveness and instant therapeutic efficacy. In addition, with the rapid development of nanoscience and nanotechnology, phototherapy systems based on nanoparticles or nanocomposites also evolved as an emerging hotspot in nanomedicine research, especially in cancer. In this review, first we briefly introduce the history of phototherapy, and the mechanisms of phototherapy in cancer treatment. Then, we summarize the representative development over the past three to five years in nanoparticle-based phototherapy and highlight the design of the innovative nanoparticles thereof. Finally, we discuss the feasibility and the potential of the nanoparticle-based phototherapy systems in clinical anticancer therapeutic applications, aiming to predict future research directions in this field. Our review is a tutorial work, aiming at providing useful insights to researchers in the field of nanotechnology, nanoscience and cancer.