People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Birkett, Martin
Northumbria University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Precision depth-controlled isolated silver nanoparticle-doped diamond-like carbon coatings with enhanced ion release, biocompatibility, and mechanical performancecitations
- 2023Soft diamond-like carbon coatings with superior biocompatibility for medical applicationscitations
- 2023Biocompatible Ti3Au–Ag/Cu thin film coatings with enhanced mechanical and antimicrobial functionalitycitations
- 2023Biocompatible Ti3Au–Ag/Cu thin film coatings with enhanced mechanical and antimicrobial functionalitycitations
- 2022Enhanced mechanical and biocompatibility performance of Ti(1- x )Ag(x) coatings through intermetallic phase modificationcitations
- 2022Thermal activation of Ti(1-x)Au(x) thin films with enhanced hardness and biocompatibility citations
- 2022Tribological Behavior of Microalloyed Cu50Zr50 Alloy
- 2022Tribological Behavior of Microalloyed Cu50Zr50 Alloy
- 2022Mn3Ag(1-x)Cu(x)N antiperovskite thin films with ultra-low temperature coefficient of resistancecitations
- 2022Mn3Ag(1-x)Cu(x)N antiperovskite thin films with ultra-low temperature coefficient of resistancecitations
- 2022Investigating the Thermal and Mechanical Properties of Polyurethane Urea Nanocomposites for Subsea Applications
- 2022Thermal activation of Ti(1-x)Au(x) thin films with enhanced hardness and biocompatibilitycitations
- 2021Mechanical performance of biocompatible Ti-Au thin films grown on glass and Ti6Al4V substrates
- 2021Effect of noble metal (M=Ag, Au) doping concentration on mechanical and biomedical properties of Ti-M matrix thin films co-deposited by magnetron sputtering
- 2019A Numerical and Experimental Study of Adhesively-Bonded Polyethylene Pipelinescitations
- 2018Tuning the antimicrobial behaviour of Cu85Zr15 thin films in “wet” and “dry” conditions through structural modificationscitations
- 2016Mechanical behaviour of adhesively bonded polyethylene tapping teescitations
- 2016Electrical resistivity of CuAlMo thin films grown at room temperature by dc magnetron sputteringcitations
- 2016Resistor trimming geometry; past, present and futurecitations
- 2015Investigation into the Development of an Additive Manufacturing Technique for the Production of Fibre Composite Productscitations
- 2012Optimization of the deposition and annealing of CuAIMo thin film resistors
- 2008Discrete resistor technologies and potential future advancements
- 2006Effects of annealing on the electrical properties of NiCr vs AlCu thin film resistors prepared by DC magnetron sputtering
Places of action
Organizations | Location | People |
---|
article
Thermal activation of Ti(1-x)Au(x) thin films with enhanced hardness and biocompatibility
Abstract
The lifetime of orthopaedic implants can be extended by coating the softer Ti6Al4V alloy with harder biocompatible thin films. In this work, thin films of Ti(1-x)Au(x) are grown on Ti6Al4V and glass substrates by magnetron sputtering in the entire x = 0–1 range, before their key biomechanical properties are performance tuned by thermal activation. For the first time, we explore the effect of in-situ substrate heating versus ex-situ post-deposition heat-treatment, on development of mechanical and biocompatibility performance in Ti–Au films. A ∼250% increase in hardness is achieved for Ti–Au films compared to bulk Ti6Al4V and a ∼40% improvement from 8.8 GPa as-grown to 11.9 and 12.3 GPa with in-situ and ex-situ heat-treatment respectively, is corelated to changes in structural, morphological and chemical properties, providing insights into the origins of super-hardness in the Ti rich regions of these materials. X-ray diffraction reveals that as-grown films are in nanocrystalline states of Ti–Au intermetallic phases and thermal activation leads to emergence of mechanically hard Ti–Au intermetallics, with films prepared by in-situ substrate heating having enhanced crystalline quality. Surface morphology images show clear changes in grain size, shape and surface roughness following thermal activation, while elemental analysis reveals that in-situ substrate heating is better for development of oxide free Ti3Au β-phases. All tested Ti–Au films are non-cytotoxic against L929 mouse fibroblast cells, while extremely low leached ion concentrations confirm their biocompatibility. With peak hardness performance tuned to >12 GPa and excellent biocompatibility, Ti–Au films have potential as a future coating technology for load bearing medical implants.