People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sobola, Dinara
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2024Analysis of processing efficiency, surface, and bulk chemistry, and nanomechanical properties of the Monel<sup>®</sup> alloy 400 after ultrashort pulsed laser ablationcitations
- 2024Optical Properties of Yttrium Ferrite Films Prepared by Pulse Laser Deposition
- 2024Characterization of field emission from oxidized copper emitterscitations
- 2024Optical Properties of YttriumOrthoferrite Films Prepared by PlasmaLaser Deposition
- 2024Optical and electrical performance of translucent BaTiO3-BaSnO3 ceramicscitations
- 2024Comprehensive analysis of charge carriers dynamics through the honeycomb structure of graphite thin films and polymer graphite with applications in cold field emission and scanning tunneling microscopycitations
- 2024Analysis of processing efficiency, surface, and bulk chemistry, and nanomechanical properties of the Monel® alloy 400 after ultrashort pulsed laser ablationcitations
- 2024Field Ion Microscopy of Tungsten Nano-Tips Coated with Thin Layer of the EpoxyResin
- 2023Exploring the Piezoelectric Properties of Bismuth Ferrite Thin Films Using Piezoelectric Force Microscopy: A Case Studycitations
- 2023Piezo-Enhanced Photocatalytic Activity of the Electrospun Fibrous Magnetic PVDF/BiFeO3 Membranecitations
- 2023Electrical characteristics of different concentration of silica nanoparticles embedded in epoxy resincitations
- 2022Nanoscale surface dynamics of RF-magnetron sputtered CrCoCuFeNi high entropy alloy thin filmscitations
- 2022Nanoscale surface dynamics of RF-magnetron sputtered CrCoCuFeNi high entropy alloy thin filmscitations
- 2022Characterization and Evaluation of Engineered Coating Techniques for Different Cutting Tools - Reviewcitations
- 2022Characterization and Evaluation of Engineered Coating Techniques for Different Cutting Tools-Reviewcitations
- 2022Advances in sustainable grinding of different types of the titanium biomaterials for medical applicationscitations
- 2022Multiferroic/Polymer Flexible Structures Obtained by Atomic Layer Depositioncitations
- 2022Morphotropic Phase Boundary Enhanced Photocatalysis in Sm Doped BiFeO3citations
- 2021PVDF Fibers Modification by Nitrate Salts Dopingcitations
- 2021Case Study of Polyvinylidene Fluoride Doping by Carbon Nanotubescitations
- 2021Morphological features in aluminum nitride epilayers prepared by magnetron sputtering ; Morfologické detaily v AlN epivrstvách připravených magnetronovým napařovánímcitations
- 2021Characterization of Polyvinylidene Fluoride (PVDF) Electrospun Fibers Doped by Carbon Flakescitations
- 2021Field emission properties of polymer graphite tips prepared by membrane electrochemical etchingcitations
- 2020Scanning proximal microscopy study of the thin layers of silicon carbide aluminum nitride solid solution manufactured by fast sublimation epitaxy ; Použitá sondového rastrovacího mikroskopu pro studium tenkých vrstev karbidu křemíku a nitridu hliníku vyrobených rychlou sublimační epitaxí
Places of action
Organizations | Location | People |
---|
article
Advances in sustainable grinding of different types of the titanium biomaterials for medical applications
Abstract
This review discusses various grades of titanium biomaterials and their sustainable grindability for application in the medical field. Titanium biomaterials are most commonly utilized for medical applications due to their exceptional characteristics such as high corrosion resistance and biocompatibility. The presented review looks at the principal requirements of titanium for medical applications, such as some good mechanical properties, biocompatibility, corrosion, wear resistance properties, and processability that facilitate the successful implantation of implants. It discusses the various types of titanium alloys that are commercially available and, more specifically, used for medical applications. It highlights the properties of different grades of titanium alloys and further narrows down its primary focus on applications, advantages, and shortcomings of commercially available titanium biomaterials. Machining titanium alloys is a difficult task due to their inherent properties such as low thermal conductivity and chemical reactivity at high temperatures and usually results in changes in metallurgy and surface integrity at the machined surface. Conventional machining, which has been the main machining method, has some limitations related to environmental hazards, cutting fluid costs, and operator health issues that have necessitated the development of sustainable machining. The emphasis in this review has been placed on sustainable grinding techniques such as MQL machining, cryogenic machining, nano-particle MQL machining, high-pressure machining, and solid lubrication machining used to grind titanium alloys and their benefits and limitations. Finally, the review will highlight some of the potential areas for future research and trends on different cooling and lubrication methods in the sustainable grinding of titanium alloys for medical applications. It is believed that this review will be of great benefit to the industries involved in manufacturing titanium-based medical implants.