Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Terpitz, Ulrich

  • Google
  • 1
  • 8
  • 76

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2008Effects on capacitance by overexpression of membrane proteins.76citations

Places of action

Chart of shared publication
Schneider-Hohendorf, Tilman
1 / 1 shared
Vl, Sukhorukov
1 / 1 shared
Haase, W.
1 / 8 shared
Bamberg, E.
1 / 1 shared
Zimmermann, D.
1 / 1 shared
Zhou, A.
1 / 1 shared
Kiesel, M.
1 / 1 shared
Feldbauer, K.
1 / 1 shared
Chart of publication period
2008

Co-Authors (by relevance)

  • Schneider-Hohendorf, Tilman
  • Vl, Sukhorukov
  • Haase, W.
  • Bamberg, E.
  • Zimmermann, D.
  • Zhou, A.
  • Kiesel, M.
  • Feldbauer, K.
OrganizationsLocationPeople

article

Effects on capacitance by overexpression of membrane proteins.

  • Schneider-Hohendorf, Tilman
  • Vl, Sukhorukov
  • Haase, W.
  • Terpitz, Ulrich
  • Bamberg, E.
  • Zimmermann, D.
  • Zhou, A.
  • Kiesel, M.
  • Feldbauer, K.
Abstract

Functional Channelrhodopsin-2 (ChR2) overexpression of about 10(4)channels/mum(2) in the plasma membrane of HEK293 cells was studied by patch-clamp and freeze-fracture electron microscopy. Simultaneous electrorotation measurements revealed that ChR2 expression was accompanied by a marked increase of the area-specific membrane capacitance (C(m)). The C(m) increase apparently resulted partly from an enlargement of the size and/or number of microvilli. This is suggested by a relatively large C(m) of 1.15+/-0.08 microF/cm(2) in ChR2-expressing cells measured under isotonic conditions. This value was much higher than that of the control HEK293 cells (0.79+/-0.02 microF/cm(2)). However, even after complete loss of microvilli under strong hypoosmolar conditions (100 mOsm), the ChR2-expressing cells still exhibited a significantly larger C(m) (0.85+/-0.07 microF/cm(2)) as compared to non-expressing control cells (0.70+/-0.03 microF/cm(2)). Therefore, a second mechanism of capacitance increase may involve changes in the membrane permittivity and/or thickness due to the embedded ChR2 proteins.

Topics
  • impedance spectroscopy
  • electron microscopy