Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Stankovic, M.

  • Google
  • 1
  • 4
  • 151

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2013Unraveling protein stabilization mechanisms151citations

Places of action

Chart of shared publication
Waard, H. De
1 / 1 shared
Grasmeijer, N.
1 / 1 shared
Frijlink, Henderik W.
1 / 32 shared
Hinrichs, Wouter
1 / 17 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Waard, H. De
  • Grasmeijer, N.
  • Frijlink, Henderik W.
  • Hinrichs, Wouter
OrganizationsLocationPeople

article

Unraveling protein stabilization mechanisms

  • Stankovic, M.
  • Waard, H. De
  • Grasmeijer, N.
  • Frijlink, Henderik W.
  • Hinrichs, Wouter
Abstract

<p>The aim of this study was to elucidate the role of the two main mechanisms used to explain the stabilization of proteins by sugar glasses during drying and subsequent storage: the vitrification and the water replacement theory. Although in literature protein stability is often attributed to either vitrification or water replacement, both mechanisms could play a role and they should be considered simultaneously. A model protein, alkaline phosphatase, was incorporated in either inulin or trehalose by spray drying. To study the storage stability at different glass transition temperatures, a buffer which acts as a plasticizer, ammediol, was incorporated in the sugar glasses. At low glass transition temperatures (&lt;50°C), the enzymatic activity of the protein strongly decreased during storage at 60°C. Protein stability increased when the glass transition temperature was raised considerably above the storage temperature. This increased stability could be attributed to vitrification. A further increase of the glass transition temperature did not further improve stability. In conclusion, vitrification plays a dominant role in stabilization at glass transition temperatures up to 10 to 20°C above storage temperature, depending on whether trehalose or inulin is used. On the other hand, the water replacement mechanism predominantly determines stability at higher glass transition temperatures.</p>

Topics
  • impedance spectroscopy
  • theory
  • glass
  • glass
  • glass transition temperature
  • drying