People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Aghdam, M. M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2016Modeling and analysis of reversible shape memory adaptive panelscitations
- 2015Micro-mechanics of composite with SMA fibers embedded in metallic/polymeric matrix under off-axial loadingscitations
- 2015A simple and efficient 1-D macroscopic model for shape memory alloys considering ferro-elasticity effect
- 2015Micromechanics of shape memory alloy fiber-reinforced composites subjected to multi-axial non-proportional loadingscitations
- 2015Micro-macro thermo-mechanical analysis of axisymmetric shape memory alloy composite cylinderscitations
- 2014Shape control of shape memory alloy composite beams in the post-buckling regimecitations
- 2014Active shape/stress control of shape memory alloy laminated beamscitations
- 2014On the vibration control capability of shape memory alloy composite beamscitations
- 2014A robust three-dimensional phenomenological model for polycrystalline SMAscitations
- 2013A phenomenological SMA model for combined axial-torsional proportional/non-proportional loading conditionscitations
Places of action
Organizations | Location | People |
---|
article
Shape control of shape memory alloy composite beams in the post-buckling regime
Abstract
<p>The aim of the paper is to investigate active shape control of post-buckled elastic beams subjected to in-plane compressive loadings using surface-bonded shape memory alloy (SMA) layer actuators. A robust macroscopic SMA model is used to simulate main features of the SMA layer under dominant axial and transverse shear stresses during non-proportional thermo-mechanical loadings. The SMA model is able to reproduce martensite transformation/orientation, pseudo-elasticity, shape memory effect and in particular reorientation of martensite and ferro-elasticity effects. Non-linear equations of equilibrium for the moderately thick smart beam are derived by means of the principle of minimum total potential energy based on the first-order shear deformation theory and von Kármán geometrical non-linearity. The governing equations of equilibrium are solved using Ritz based finite element method along with an iterative numerical algorithm. Effects of the pre-strain state, thickness and temperature of the SMA layer actuator are examined, and their implications upon the pre/post-buckling behavior of the smart beam under in-plane compressive loadings are highlighted. The obtained results reveal that installing the SMA layer actuator can play a significant beneficial role toward confining deformation of the smart structure in the post-buckling regime. Due to lack of similar results in the specialized literature, the results of this research are expected to contribute to a better understanding of active shape control capability of the SMA composite beams under in-plane mechanical loadings.</p>