Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ramírez-Zamora, R. M.

  • Google
  • 1
  • 4
  • 19

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Optimisation of the removal conditions for heavy metals from water19citations

Places of action

Chart of shared publication
Contreras, Rebeca
1 / 1 shared
Mercado-Borrayo, B. M.
1 / 1 shared
Sanchez, Antoni
1 / 12 shared
Font, Xavier
1 / 10 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Contreras, Rebeca
  • Mercado-Borrayo, B. M.
  • Sanchez, Antoni
  • Font, Xavier
OrganizationsLocationPeople

article

Optimisation of the removal conditions for heavy metals from water

  • Contreras, Rebeca
  • Mercado-Borrayo, B. M.
  • Sanchez, Antoni
  • Font, Xavier
  • Ramírez-Zamora, R. M.
Abstract

<p>This work studies an innovative approach to water treatment by using recycled electric induction furnace slag for the removal of Cd, Cr and Pb-ions and comparing the results to a treatment with specifically developed CeO2 nanoparticles. The slag was characterised by X-ray Fluorescence, X-ray diffraction and SEM. The effects of initial ion concentration and adsorbent dose were investigated according to an experimental design. Adsorption tests were carried out with ion solutions present in concentrations ranging from 1 to 10 mg/L and adsorbent doses from 0.064 to 0.64 g/L. The removal mechanism for CeO2 is adsorption. For slag, literature proposes a mechanism involving chemical adsorption of Cd2+, Cr6+ and Pb2+ by silanol and aluminol groups; precipitation in the form of metal silicates formed between the cations and silicic acid leached from the slag provides an alternative explanation. The removal efficiencies with nanoparticles are higher than reported for any other adsorbent (including slag) under all test combinations for the three metals investigated. The maximum removal efficiency with slag was 74% for Cr6+, 64% for Cd2+ and 34% for Pb2+, comparable to, or higher than, other materials reported in literature. The treatment with slag has clear promises in terms of economy and scalability. (C) 2018 Production and hosting by Elsevier B.V. on behalf of King Saud University.</p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • scanning electron microscopy
  • x-ray diffraction
  • precipitation