Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kovacev, Nikolina

  • Google
  • 2
  • 7
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024A numerical model for predicting powder characteristics in LMD considering particle interaction3citations
  • 2022Numerical simulation of sintering of DLP printed alumina ceramics9citations

Places of action

Chart of shared publication
Jiménez, Amaia
1 / 3 shared
Bidare, Prveen
1 / 10 shared
Essa, Khamis
2 / 46 shared
Shu, Chang
1 / 2 shared
Guner, Ahmet
1 / 2 shared
Lisi, Michele De
1 / 2 shared
Attia, Usama
1 / 2 shared
Chart of publication period
2024
2022

Co-Authors (by relevance)

  • Jiménez, Amaia
  • Bidare, Prveen
  • Essa, Khamis
  • Shu, Chang
  • Guner, Ahmet
  • Lisi, Michele De
  • Attia, Usama
OrganizationsLocationPeople

article

A numerical model for predicting powder characteristics in LMD considering particle interaction

  • Jiménez, Amaia
  • Bidare, Prveen
  • Essa, Khamis
  • Shu, Chang
  • Kovacev, Nikolina
  • Guner, Ahmet
Abstract

In this work, a numerical model is proposed to analyze the influence of particle–particle interaction in laser directed energy deposition or LMD (laser metal deposition) of CM247 Ni-based superalloy. The model is based on the analysis of contact between particles and the potential agglomeration of powder to predict powder conditions at the nozzle exit. Simulation results were experimentally validated and a good agreement was observed. At the nozzle exit mainly large particles (>100 lm) are found and small ones (<10 lm) tend to flow away from this region. This was also observed in the experimental PSD. Additionally, based on the relative velocity of particles, simulations are able to predict the formation of dents. In comparing virgin powder PSD and the one at the nozzle exit, it was observed that largest particles are collected at the exit. In order to explain this phenomena, particle agglomeration was analysed numerically. It was seen that small particles tend to adhere to the big ones due to their higher adhesive forces, which would explain the change in PSD.

Topics
  • Deposition
  • impedance spectroscopy
  • simulation
  • directed energy deposition
  • superalloy