People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gierlotka, S.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2020High Pressure Quenched Glasses: unique structures and propertiescitations
- 2019Nanocrystalline NiAl intermetallic alloy with high hardness produced by mechanical alloying and hot-pressing consolidationcitations
- 2019NiAl-B composites with nanocrystalline intermetallic matrix produced by mechanical alloying and consolidationcitations
- 2011Electrical properties and thermal stability of FePO4 glasses and nanomaterialscitations
- 2011Electrical properties vs. microstructure of nanocrystallized V2O5–P2O5 glasses — An extended temperature range studycitations
- 2011Electrical conductivity and phase transformations in the composite ionic conductors AgI : α-Al2O3 prepared via a high-pressure routecitations
- 2009Correlation between electrical properties and microstructure of nanocrystallized V2O5–P2O5 glassescitations
- 2008Electrical properties and microstructure of glassy-crystalline Ag+-ion conducting composites synthesized by a high-pressure methodcitations
- 2007Conductivity, thermal behavior and microstructure of new composites based on AgI–Ag2O–B2O3 glasses with Al2O3 matrixcitations
- 2006Conductivity and microstructure of silver borate glass/zirconia composites, prepared via a high pressure route
- 2006SiC-Zn nanocomposites obtained using the high-pressure infiltration technique
- 2006TiC Nanocrystal Formation from Carburization of Laser-Grown Ti/O/C Nanopowders for Nanostructured Ceramicscitations
- 2005Elaboration of SiC, TiC and ZrC nanopowders by laser pyrolysis : from nanoparticles to ceramic nanomaterialscitations
- 2004Chapter 13. Microwave-Driven Hydrothermal Synthesis of Oxide Nanopowders for Applications in Optoelectronicscitations
Places of action
Organizations | Location | People |
---|
article
Nanocrystalline NiAl intermetallic alloy with high hardness produced by mechanical alloying and hot-pressing consolidation
Abstract
An Ni-50% Al elemental powder mixture was mechanically alloyed in a SPEX ball mill. The powders after various milling times were investigated by X-ray diffraction and differential scanning calorimetry. A nanocrystalline NiAl intermetallic phase with the mean crystallite size of 13 nm was formed after 8 h of milling. The produced powder was consolidated by high-pressure hot-pressing at 800 °C under the pressure of 7.7 GPa. The consolidated material was characterised by structural investigations. Hardness, density and open porosity as well as heat resistance measurements were also conducted. The mean crystallite size of the NiAl intermetallic phase in the bulk material was 24 nm, which shows that the nanocrystalline structure was maintained during the consolidation process. The hardness and heat resistance of the produced nanocrystalline NiAl were compared with those of a reference microcrystalline NiAl. The hardness of the nanocrystalline NiAl intermetallic is 971 HV1 (9.53 GPa) and it significantly exceeds the hardness of the reference microcrystalline NiAl. The relative density of the consolidated sample is 100%. The produced nanocrystalline NiAl intermetallic exhibits very good oxidation resistance at 900 °C in air. For this material, the mass gain per area after 100 h of exposure is 1.4 × 10-4 g and is smaller than that for the reference microcrystalline NiAl sample. The quality of consolidation with preserving NiAl nanocrystalline structure is satisfactory and the hardness as well as the oxidation resistance of the produced material are relatively high.