People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Krasnowski, Marek
Warsaw University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023Microstructure and Mechanical Characterization of Novel Al2O3–(NiAl–Al2O3) Composites Fabricated via Pulse Plasma Sinteringcitations
- 2021Characterization of Al2O3 Samples and NiAl–Al2O3 Composite Consolidated by Pulse Plasma Sinteringcitations
- 2019Nanocrystalline NiAl intermetallic alloy with high hardness produced by mechanical alloying and hot-pressing consolidationcitations
- 2019NiAl-B composites with nanocrystalline intermetallic matrix produced by mechanical alloying and consolidationcitations
- 2019Structure, thermal stability and magnetic properties of mechanically alloyed (Fe-Al)-30vol.%B powderscitations
- 2016Structure and magnetic properties of Fe–Nb–B amorphous/nanocrystalline alloys produced by compaction of mechanically alloyed powderscitations
- 2012Ti-Y2O3 Composites with Nanocrystalline and Microcrystalline Matrixcitations
- 2003FeAl–TiN nanocomposite produced by reactive ball milling and hot-pressing consolidationcitations
- 2002The FeAl-30%TiC nanocomposite produced by mechanical alloying and hot-pressing consolidationcitations
Places of action
Organizations | Location | People |
---|
article
Nanocrystalline NiAl intermetallic alloy with high hardness produced by mechanical alloying and hot-pressing consolidation
Abstract
An Ni-50% Al elemental powder mixture was mechanically alloyed in a SPEX ball mill. The powders after various milling times were investigated by X-ray diffraction and differential scanning calorimetry. A nanocrystalline NiAl intermetallic phase with the mean crystallite size of 13 nm was formed after 8 h of milling. The produced powder was consolidated by high-pressure hot-pressing at 800 °C under the pressure of 7.7 GPa. The consolidated material was characterised by structural investigations. Hardness, density and open porosity as well as heat resistance measurements were also conducted. The mean crystallite size of the NiAl intermetallic phase in the bulk material was 24 nm, which shows that the nanocrystalline structure was maintained during the consolidation process. The hardness and heat resistance of the produced nanocrystalline NiAl were compared with those of a reference microcrystalline NiAl. The hardness of the nanocrystalline NiAl intermetallic is 971 HV1 (9.53 GPa) and it significantly exceeds the hardness of the reference microcrystalline NiAl. The relative density of the consolidated sample is 100%. The produced nanocrystalline NiAl intermetallic exhibits very good oxidation resistance at 900 °C in air. For this material, the mass gain per area after 100 h of exposure is 1.4 × 10-4 g and is smaller than that for the reference microcrystalline NiAl sample. The quality of consolidation with preserving NiAl nanocrystalline structure is satisfactory and the hardness as well as the oxidation resistance of the produced material are relatively high.