Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Eyckens, Dan

  • Google
  • 1
  • 6
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Solvent-free Surface Modification of Milled Carbon Fiber using Resonant Acoustic Mixingcitations

Places of action

Chart of shared publication
Wilde, Andrea
1 / 1 shared
Yalcin, Dilek
1 / 3 shared
Henderson, Luke
1 / 11 shared
Howard, Shaun
1 / 4 shared
Muir, Benjamin Ward
1 / 14 shared
Hayne, David
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Wilde, Andrea
  • Yalcin, Dilek
  • Henderson, Luke
  • Howard, Shaun
  • Muir, Benjamin Ward
  • Hayne, David
OrganizationsLocationPeople

article

Solvent-free Surface Modification of Milled Carbon Fiber using Resonant Acoustic Mixing

  • Wilde, Andrea
  • Eyckens, Dan
  • Yalcin, Dilek
  • Henderson, Luke
  • Howard, Shaun
  • Muir, Benjamin Ward
  • Hayne, David
Abstract

Resonant Acoustic Mixing (RAM) is used to rapidly modify the surface of milled carbon fiber using diazonium salts in solvent free conditions. This novel method allows tuning of the surface properties of this material and reduces the environmental footprint usually associated with surface modification of carbon fiber (discontinuous or otherwise). As a proof of concept, fluorine-containing diazonium salts were successfully grafted as determined by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) and an increase in water contact angle (WCA) of the milled carbon fiber samples (+ 15°). Atomic Force Microscopy (AFM) together with SEM revealed the surface structure and integrity of the milled carbon fibers could be maintained despite vigorous mixing conditions. Using RAM proved more efficient than positive controls produced under thermal conditions in solvent.

Topics
  • impedance spectroscopy
  • surface
  • Carbon
  • scanning electron microscopy
  • x-ray photoelectron spectroscopy
  • atomic force microscopy
  • Energy-dispersive X-ray spectroscopy