People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kuball, Martin H. H.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2022Self-assembled microstructures with localized graphene domains in an epoxy blend and their related propertiescitations
- 2021Impact of Polymer Residue Level on the In-Plane Thermal Conductivity of Suspended Large-Area Graphene Sheets.citations
- 2021Impact of Polymer Residue Level on the In-Plane Thermal Conductivity of Suspended Large-Area Graphene Sheetscitations
- 2020Polarity dependence in Cl2-based plasma etching of GaN, AlGaN and AlNcitations
- 2019Understanding of Leading-Edge Protection Performance Using Nano-Silicates for Modificationcitations
- 2018Determination of the self-compensation ratio of carbon in AlGaN for HEMTscitations
- 2017Morphological and electrical comparison of Ti and Ta based ohmic contacts for AlGaN/GaN-on-SiC HFETscitations
- 2015Low thermal resistance of a GaN-on-SiC transistor structure with improved structural properties at the interfacecitations
- 2015Enhancement-mode metal–insulator–semiconductor GaN/AlInN/GaN heterostructure field-effect transistors on Si with a threshold voltage of +3.0 V and blocking voltage above 1000 Vcitations
- 2014Time evolution of off-state degradation of AlGaN/GaN high electron-mobility transistorscitations
- 2009Reducing Thermal Resistance of AlGaN/GaN Electronic Devices Using Novel Nucleation Layerscitations
- 2007Integrated Raman - IR Thermography for Reliability and Performance Optimization, and Failure Analysis of Electronic Devices
Places of action
Organizations | Location | People |
---|
article
Self-assembled microstructures with localized graphene domains in an epoxy blend and their related properties
Abstract
Locating nanoparticles in selected areas via the mixing of two immiscible polymers is widely studied for achieving nanocomposites with next-level performance, however, the formation of a phase-separated domain constructed with nanofillers from entirely miscible molecules is rarely achieved in the literature. Here we demonstrate a method to fabricate a self-constructed bi-continuous phase structure with localized amine-functionalized graphene nanoplatelets (A-GNPs) in a liquid processable multi-component epoxy blend. Atomic force microscopy infrared spectroscopy (AFM-IR) was employed to identify the compositions of the phase-separated microdomains formed during self-assembly by A-GNP in the multi-component epoxy blend, with incorporating 1-(2-aminoethyl) piperazine (AEPIP) found to be the driving force for the formation of the graphene microdomains. Nanoindentation measurements show that a Young’s modulus of 6.3 GPa for the graphene domain was achieved, which is nearly twice that of the epoxy resin (3.2 GPa). Transient thermoreflectance results indicate that the thermal conductivity of nanocomposite with phase-separated graphene domain reached 0.48 W/mK, exhibiting a significant enhancement (70%) when compared to epoxy resin, while maintaining excellent dielectric properties. Overall, this study provides a simple and effective route to fabricate phase-separated microstructure with nanoparticles from a liquid processable nanocomposite blend, which shows the great potential of this promising new approach to fabricate nanocomposite films with excellent performance for microelectronics applications.