People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Coclite, Anna Maria
University of Bari Aldo Moro
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Icephobic Gradient Polymer Coatings Coupled with Electromechanical De-icing Systems: A Promising Ice Repellent Hybrid Systemcitations
- 2024Functionalizing Surfaces by Physical Vapor Deposition To Measure the Degree of Nanoscale Contact Using FRET
- 2023Capillary-Driven Water Transport by Contrast Wettability-Based Durable Surfacescitations
- 2023Advances in surface modification and functionalization for tailoring the characteristics of thin films and membranes via chemical vapor deposition techniquescitations
- 2023Chemical vapor deposition of carbohydrate-based polymerscitations
- 2022Tuning the Porosity of Piezoelectric Zinc Oxide Thin Films Obtained from Molecular Layer-Deposited “Zincones”citations
- 2022Tuning the Porosity of Piezoelectric Zinc Oxide Thin Films Obtained from Molecular Layer-Deposited “Zincones”citations
- 2022Shedding light on the initial growth of ZnO during plasma-enhanced atomic layer deposition on vapor-deposited polymer thin filmscitations
- 2022Measurements of Temperature and Humidity Responsive Swelling of Thin Hydrogel Films by Interferometry in an Environmental Chambercitations
- 2022Humidity Responsive Reflection Grating Made by Ultrafast Nanoimprinting of a Hydrogel Thin Filmcitations
- 2021Multiresponsive Soft Actuators Based on a Thermoresponsive Hydrogel and Embedded Laser-Induced Graphenecitations
- 2021Oxidative Chemical Vapor Deposition of Conducting Polymer Films on Nanostructured Surfaces for Piezoresistive Sensor Applicationscitations
- 2020Fast optical humidity sensor based on nanostructured hydrogels
- 2020Conformal Coating of Powder by Initiated Chemical Vapor Deposition on Vibrating Substratecitations
- 2020Solvent-Free Powder Synthesis and Thin Film Chemical Vapor Deposition of a Zinc Bipyridyl-Triazolate Frameworkcitations
- 2020Initiated Chemical Vapor Deposition of Crosslinked Organic Coatings for Controlling Gentamicin Deliverycitations
- 2019Fast Optical Humidity Sensor Based on Hydrogel Thin Film Expansion for Harsh Environmentcitations
- 2017Simple method for the quantitative analysis of thin copolymer films on substrates by infrared spectroscopy using direct calibrationcitations
- 2016Deposition kinetics and characterization of stable ionomers from hexamethyldisiloxane and methacrylic acid by plasma enhanced chemical vapor depositioncitations
Places of action
Organizations | Location | People |
---|
article
Shedding light on the initial growth of ZnO during plasma-enhanced atomic layer deposition on vapor-deposited polymer thin films
Abstract
Interest in atomic layer deposition (ALD) processes on polymer substrates is fueled by the increasing rise of organic electronics and polymer-based nanodevices. This study provides new insights into the initial growth and interface formation during plasma-enhanced ALD (PE-ALD) of ZnO on poly ethylene glycol dimethylacrylate (pEGDMA) and poly 2-hydroxyethyl methacrylate (pHEMA) thin films, both deposited by initiated chemical vapor deposition (iCVD). In-situ spectroscopic ellipsometry showed that PE-ALD growth on the investigated polymers is a result of two competing processes: plasma etching of the polymer substrate and ZnO nucleation and growth. During the first 10–15 ALD cycles, polymer etching was found to prevail until at a certain point (depending on plasma power and type of polymer) ZnO growth takes over and the regime of linear ALD growth is entered. On pHEMA, though more sensitive to etching, ZnO film formation starts early on, whereas on pEGDMA, subsurface nucleation and island growth appear to dominate the initial stage of deposition. Despite the initial etching, resulting ZnO films are smooth and of comparable structural quality to those grown on silicon. These findings contribute to a deeper understanding of PE-ALD growth on polymers providing knowledge essential for the successful development of new processes and applications.