Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ghosh, Paheli

  • Google
  • 10
  • 28
  • 137

Lancaster University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2024Vertical compositional heterogeneity induces instability in all-inorganic CsPbIBr 2 perovskitescitations
  • 2024Vertical compositional heterogeneity induces instability in all-inorganic CsPbIBr2 perovskitescitations
  • 2022Influence of Nanostructures in Perovskite Solar Cells12citations
  • 2022Crystalline grain engineered CsPbIBr 2 films for indoor photovoltaics14citations
  • 2022Crystalline grain engineered CsPbIBr2 films for indoor photovoltaics14citations
  • 2022Hysteresis in hybrid perovskite indoor photovoltaics14citations
  • 2020Strength-ductility trade-off via SiC nanoparticle dispersion in A356 aluminium matrix27citations
  • 2020Strength-ductility trade-off via SiC nanoparticle dispersion in A356 aluminium matrix27citations
  • 2016Synthesis of diagnostic silicon nanoparticles for targeted delivery of thiourea to epidermal growth factor receptor-expressing cancer cells24citations
  • 2016Influence of Nanostructures in Perovskite Solar Cells5citations

Places of action

Chart of shared publication
Spencer, Ben F.
2 / 7 shared
Krishnan Jagadamma, Lethy
3 / 19 shared
Nixon, Tony P.
1 / 1 shared
Krishnamurthy, Professor Satheesh
3 / 24 shared
Sundaram, Senthilarasu
1 / 18 shared
Trager-Cowan, Carol
2 / 25 shared
Bruckbauer, Jochen
2 / 12 shared
Jagadamma, Lethy Krishnan
2 / 21 shared
Wang, Shaoyang
1 / 4 shared
Bulloch, Alasdair
1 / 1 shared
Taherzadeh Mousavian, Reza
1 / 14 shared
Azari Khosroshahi, Rasoul
1 / 11 shared
Behnamfard, S.
2 / 4 shared
Heidarzadeh, A.
2 / 9 shared
Krishnamurthy, Satheesh
2 / 7 shared
Zavasnik, Janez
1 / 1 shared
Brabazon, Dermot
1 / 80 shared
Mousavian, R. Taherzadeh
1 / 3 shared
Zavasnik, J.
1 / 3 shared
Khosroshahi, R. Azari
1 / 2 shared
Brabazon, D.
1 / 12 shared
Webster, Carl A.
1 / 1 shared
Al-Jamal, Wafa T.
1 / 1 shared
Pereira, Sara
1 / 2 shared
Chao, Yimin
1 / 6 shared
Behray, Mehrnaz
1 / 1 shared
Sundaram, S.
1 / 2 shared
Nixon, T.
1 / 1 shared
Chart of publication period
2024
2022
2020
2016

Co-Authors (by relevance)

  • Spencer, Ben F.
  • Krishnan Jagadamma, Lethy
  • Nixon, Tony P.
  • Krishnamurthy, Professor Satheesh
  • Sundaram, Senthilarasu
  • Trager-Cowan, Carol
  • Bruckbauer, Jochen
  • Jagadamma, Lethy Krishnan
  • Wang, Shaoyang
  • Bulloch, Alasdair
  • Taherzadeh Mousavian, Reza
  • Azari Khosroshahi, Rasoul
  • Behnamfard, S.
  • Heidarzadeh, A.
  • Krishnamurthy, Satheesh
  • Zavasnik, Janez
  • Brabazon, Dermot
  • Mousavian, R. Taherzadeh
  • Zavasnik, J.
  • Khosroshahi, R. Azari
  • Brabazon, D.
  • Webster, Carl A.
  • Al-Jamal, Wafa T.
  • Pereira, Sara
  • Chao, Yimin
  • Behray, Mehrnaz
  • Sundaram, S.
  • Nixon, T.
OrganizationsLocationPeople

article

Crystalline grain engineered CsPbIBr2 films for indoor photovoltaics

  • Ghosh, Paheli
  • Trager-Cowan, Carol
  • Bruckbauer, Jochen
  • Jagadamma, Lethy Krishnan
Abstract

Indoor photovoltaic devices have garnered profound research attention in recent years due to their prospects of powering ‘smart’ electronics for the Internet of Things (IoT). Here it is shown that all-inorganic Cs-based halide perovskites are promising for indoor light harvesting due to their wide bandgap matched to the indoor light spectra. Highly crystalline and compact CsPbIBr<sub>2</sub> perovskite based photovoltaic devices have demonstrated a power conversion efficiency (PCE) of 14.1% under indoor illumination of 1000 lx and 5.9% under 1 Sun. This study revealed that a reduction in grain misorientation, as well as suppression of defects in the form of metallic Pb in the perovskite film are crucial for maximising the photovoltaic properties of CsPbIBr<sub>2</sub> based devices. It was demonstrated that a pinhole free CsPbIBr<sub>2</sub>/Spiro-OMeTAD interface preserves the perovskite α phase and enhances the air stability of the CsPbIBr<sub>2</sub> devices. These devices, despite being unencapsulated, retained &gt; 55% of the maximum PCE even when stored under 30% relative humidity for a shelf-life duration of 40 days and is one of the best stability data reported so far for CsPbIBr<sub>2</sub> devices.

Topics
  • perovskite
  • impedance spectroscopy
  • grain
  • phase
  • defect
  • power conversion efficiency