People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Trager-Cowan, Carol
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2022Structural and luminescence imaging and characterisation of semiconductors in the scanning electron microscope
- 2022Crystalline grain engineered CsPbIBr 2 films for indoor photovoltaicscitations
- 2022Crystalline grain engineered CsPbIBr2 films for indoor photovoltaicscitations
- 2020Structural and luminescence imaging and characterisation of semiconductors in the scanning electron microscopecitations
- 2020Nanomechanical behaviour of individual phases in WC-Co cemented carbides, from ambient to high temperaturecitations
- 2020Influence of micro-patterning of the growth template on defect reduction and optical properties of non-polar (112ˉ0) GaN
- 2020Metrology of crystal defects through intensity variations in secondary electrons from the diffraction of primary electrons in a scanning electron microscopecitations
- 2020Luminescence behavior of semipolar (10-11) InGaN/GaN "bow-tie" structures on patterned Si substratescitations
- 2020Influence of micro-patterning of the growth template on defect reduction and optical properties of non-polar (11-20) GaNcitations
- 2018Dislocation contrast in electron channelling contrast images as projections of strain-like componentscitations
- 2017Quantitative imaging of anti-phase domains by polarity sensitive orientation mapping using electron backscatter diffractioncitations
- 2017Quantitative imaging of anti-phase domains by polarity sensitive orientation mapping using electron backscatter diffractioncitations
- 2017Spatially-resolved optical and structural properties of semi-polar (11-22) AlxGa1-xN with x up to 0.56citations
- 2017Cross-correlation based high resolution electron backscatter diffraction and electron channelling contrast imaging for strain mapping and dislocation distributions in InAlN thin filmscitations
- 2017Exploring transmission Kikuchi diffraction using a Timepix detectorcitations
- 2016Reprint of
- 2016Optical and structural properties of GaN epitaxial layers on LiAlO2 substrates and their correlation with basal-plane stacking faultscitations
- 2016Electron channelling contrast imaging for III-nitride thin film structurescitations
- 2015Digital direct electron imaging of energy-filtered electron backscatter diffraction patternscitations
- 2013Electron channeling contrast imaging studies of nonpolar nitrides using a scanning electron microscopecitations
- 2012Imaging and identifying defects in nitride semiconductor thin films using a scanning electron microscopecitations
- 2008Rare earth doping of III-nitride alloys by ion implantationcitations
- 2004Development of CdSSe/CdS VCSELs for application to laser cathode ray tubes
- 2002Structural and optical properties of InGaN/GaN layers close to the critical layer thicknesscitations
- 2001Compositional pulling effects in InxGa1_xN/GaN layerscitations
Places of action
Organizations | Location | People |
---|
article
Crystalline grain engineered CsPbIBr2 films for indoor photovoltaics
Abstract
Indoor photovoltaic devices have garnered profound research attention in recent years due to their prospects of powering ‘smart’ electronics for the Internet of Things (IoT). Here it is shown that all-inorganic Cs-based halide perovskites are promising for indoor light harvesting due to their wide bandgap matched to the indoor light spectra. Highly crystalline and compact CsPbIBr<sub>2</sub> perovskite based photovoltaic devices have demonstrated a power conversion efficiency (PCE) of 14.1% under indoor illumination of 1000 lx and 5.9% under 1 Sun. This study revealed that a reduction in grain misorientation, as well as suppression of defects in the form of metallic Pb in the perovskite film are crucial for maximising the photovoltaic properties of CsPbIBr<sub>2</sub> based devices. It was demonstrated that a pinhole free CsPbIBr<sub>2</sub>/Spiro-OMeTAD interface preserves the perovskite α phase and enhances the air stability of the CsPbIBr<sub>2</sub> devices. These devices, despite being unencapsulated, retained > 55% of the maximum PCE even when stored under 30% relative humidity for a shelf-life duration of 40 days and is one of the best stability data reported so far for CsPbIBr<sub>2</sub> devices.