Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Weststrate, C. J. Kees-Jan

  • Google
  • 1
  • 6
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Iron carbide formation on thin iron films grown on Cu(1 0 0)12citations

Places of action

Chart of shared publication
Lauritsen, Jeppe Vang
1 / 25 shared
Li, Zheshen
1 / 24 shared
Niemantsverdriet, J. W. Hans
1 / 4 shared
Gleeson, Michael A.
1 / 2 shared
Rodríguez, Daniel García
1 / 2 shared
Yu, Xin
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Lauritsen, Jeppe Vang
  • Li, Zheshen
  • Niemantsverdriet, J. W. Hans
  • Gleeson, Michael A.
  • Rodríguez, Daniel García
  • Yu, Xin
OrganizationsLocationPeople

article

Iron carbide formation on thin iron films grown on Cu(1 0 0)

  • Weststrate, C. J. Kees-Jan
  • Lauritsen, Jeppe Vang
  • Li, Zheshen
  • Niemantsverdriet, J. W. Hans
  • Gleeson, Michael A.
  • Rodríguez, Daniel García
  • Yu, Xin
Abstract

<p>Thin iron films evaporated onto Cu(1 0 0) were carburized using ethylene to produce iron carbide surfaces for use as model systems in experimental research. XPS and AES confirm that ethylene dissociation produces a pure iron carbide. A maximum of 0.5 ML carbon can be deposited for film thicknesses below 12 ML where Fe grows as γ-iron (FCC). For thick, BCC-Fe(1 1 0) films, post-treatment with ethylene leads to carbon coverages beyond 0.5 ML where some carbon diffuses into the bulk. The film remains α-iron (BCC) and a different surface carbide with a (4 × 3) unit cell is found. On the thin FCC-Fe(1 0 0) films, carbon reconstructs the surface into a p4g(2 × 2)-Fe<sub>2</sub>C layer which has a special stability and acts as a carbon trap that prevents carbon diffusion into the bulk. Fe<sub>2</sub>C is thermally stable up to 700 K above which Fe diffuses into the copper substrate while leaving graphitic carbon behind. Carbon segregates to the surface during evaporation of iron on top of an Fe<sub>2</sub>C-covered FCC-Fe film and causes the film to retain the FCC structure up to a thickness of at least 30 ML, far beyond 12 ML where BCC-Fe forms on Cu(1 0 0) in absence of surface carbon.</p>

Topics
  • impedance spectroscopy
  • surface
  • Carbon
  • x-ray photoelectron spectroscopy
  • carbide
  • copper
  • iron
  • evaporation
  • atomic emission spectroscopy
  • Auger electron spectroscopy