People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Franssila, Sami
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2022Microfabrication atomic layer deposited Pt NPs/TiN thin film on silicon as a nanostructure signal Transducer: Electrochemical characterization toward neurotransmitter sensingcitations
- 2021Fabrication of elastic, conductive, wear-resistant superhydrophobic composite materialcitations
- 2020Elastic and fracture properties of free-standing amorphous ALD Al2O3 thin films measured with bulge testcitations
- 2019Fabrication of micro- and nanopillars from pyrolytic carbon and tetrahedral amorphous carboncitations
- 2018Elastic and fracture properties of free-standing amorphous ALD Al2O3 thin films measured with bulge testcitations
- 2018Platinum recovery from Industrial Process Solutions by Electrodepo-sition-Redox Replacement
- 2016Cellulose nanofibril film as a piezoelectric sensor materialcitations
- 2016Non-Lithographic Silicon Micromachining Using Inkjet and Chemical Etchingcitations
- 2016Novel nanostructure replication process for robust superhydrophobic surfacescitations
- 2016Robust hybrid elastomer/metal-oxide superhydrophobic surfacescitations
- 2015Fracture properties of atomic layer deposited aluminum oxide free-standing membranescitations
- 2013Laser direct writing of thick hybrid polymer microstructurescitations
- 2010Atomic layer deposition of tin dioxide sensing film in microhotplate gas sensorscitations
- 2009Carbon nanotube thin film transistors based on aerosol methodscitations
- 2007Glass microfabricated nebulizer chip for mass spectrometrycitations
- 2006Design and fabrication of integrated solid-phase extraction-zone electrophoresis microchipcitations
Places of action
Organizations | Location | People |
---|
article
Microfabrication atomic layer deposited Pt NPs/TiN thin film on silicon as a nanostructure signal Transducer: Electrochemical characterization toward neurotransmitter sensing
Abstract
| openaire: EC/H2020/824070/EU//CONNECT Funding Information: The authors thank Dr. Ville Rontu for valuable discussions in ALD process, Niklas Wester and Antti Peltonen for help with preparing electrode samples. The work utilized the fabrication and characterization facilities of Aalto University, cleanroom facilities of Micronova micro and nanofabrication center, and Nanotalo-Nanomicroscopy Center (Aalto-NMC). This project has received funding from the Horizon 2020 Framework Programme Project : 824070 — CONNECT. Publisher Copyright: © 2021 ; Titanium nitride (TiN) is widely utilized in microelectrode array fabrication for electrophysiological recordings due to its relatively low noise levels, long term stability, and exceptional biocompatibility. Atomic layer deposition (ALD) is a well-established approach for the fabrication of TiN thin films, offering great control over the thickness and properties of the films. Although, advanced procedures have been reported to develop micro and nanostructured electrodes, TiN thin film has yet not been widely applied as electrode material for electrochemical sensing, and characterization of these ALD fabricated TiN films is lacking. Here, we study the use of TiN thin films as electrochemical signal transducer for neurotransmitter dopamine (DA) detection with emphasis on investigation the effect of oxygen functionalities on the electrochemical performance of the films. We find that in order to have high enough sensitivity and selectivity the electrode material used to realize the measurements must be modified. In this work, we described TiN thin film surface modification through hybridization of microfabrication and nanocomposite approaches. Because of its good adhesion, TiN is considered as a high interesting support for Pt catalyst. Therefore, ALD was used to deposit TiN thin films and to design Pt nanoparticles (Pt NPs) on highly conductive boron-doped silicon. Further modification was done through multiwalled carbon nanotubes (MWCNTs), which were immobilized on Pt NPs/ ...