People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Barakat, Tarek
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2022Low-pressure plasma process for the dry synthesis of cactus-like Au-TiO2 nanocatalysts for toluene degradationcitations
- 2022Low-pressure plasma process for the dry synthesis of cactus-like Au-TiO 2 nanocatalysts for toluene degradationcitations
- 2020UV scattering by pores in avian eggshellscitations
- 2020Scattering of ultraviolet light by avian eggshellscitations
- 2018Visible light photocatalytic activity of macro-mesoporous TiO2-CeO2inverse opalscitations
- 2018Visible light photocatalytic activity of macro-mesoporous TiO 2 -CeO 2 inverse opalscitations
- 2012Catalytic performance of core-shell and alloy Pd-Au nanoparticles for total oxidation of VOCcitations
Places of action
Organizations | Location | People |
---|
article
Low-pressure plasma process for the dry synthesis of cactus-like Au-TiO2 nanocatalysts for toluene degradation
Abstract
<p>The development of environment-friendly, low-cost and efficient catalyst preparation processes has always been a major issue in the field of catalysis. Wet chemistry methods are often used but these techniques are not sustainable, as post waste solution treatment remains an important drawback. Here an innovative dry low-pressure plasma process for metal nanoparticles supported nanocatalysts preparation is reported. The solid metal and oxide support precursors are physically mixed and then exposed to a radiofrequency Ar/N<sub>2</sub> plasma discharge, leading to the precursor degradation and the subsequent nanoparticles generation, without pre- or post- preparation steps. The metal nanoparticle loading and the particle size of metal and oxide support can be easily tuned by changing the ratio of the precursor materials, making the process simple, versatile, highly efficient, and scalable. As a proof of concept, gold nanoparticles (Au NPs) supported on titanium dioxide (TiO<sub>2</sub>) were prepared and tested as nanocatalysts for toluene (C<sub>7</sub>H<sub>8</sub>) degradation at temperatures ranging from 25 to 450 °C. Up to 100% of C<sub>7</sub>H<sub>8</sub> conversion into CO<sub>2</sub> was achieved over the Au-TiO<sub>2</sub> nanocatalysts, demonstrating that this dry method is a very efficient way to prepare highly active nanocatalysts.</p>