People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Chavee, Loris
University of Namur
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2022Low-pressure plasma process for the dry synthesis of cactus-like Au-TiO2 nanocatalysts for toluene degradationcitations
- 2022A mechanistic approach of oxidation resistance, structural and mechanical behaviour of TiAlN coatingscitations
- 2022A mechanistic approach of oxidation resistance, structural and mechanical behaviour of TiAlN coatingscitations
- 2022Low-pressure plasma process for the dry synthesis of cactus-like Au-TiO 2 nanocatalysts for toluene degradationcitations
Places of action
Organizations | Location | People |
---|
article
Low-pressure plasma process for the dry synthesis of cactus-like Au-TiO2 nanocatalysts for toluene degradation
Abstract
<p>The development of environment-friendly, low-cost and efficient catalyst preparation processes has always been a major issue in the field of catalysis. Wet chemistry methods are often used but these techniques are not sustainable, as post waste solution treatment remains an important drawback. Here an innovative dry low-pressure plasma process for metal nanoparticles supported nanocatalysts preparation is reported. The solid metal and oxide support precursors are physically mixed and then exposed to a radiofrequency Ar/N<sub>2</sub> plasma discharge, leading to the precursor degradation and the subsequent nanoparticles generation, without pre- or post- preparation steps. The metal nanoparticle loading and the particle size of metal and oxide support can be easily tuned by changing the ratio of the precursor materials, making the process simple, versatile, highly efficient, and scalable. As a proof of concept, gold nanoparticles (Au NPs) supported on titanium dioxide (TiO<sub>2</sub>) were prepared and tested as nanocatalysts for toluene (C<sub>7</sub>H<sub>8</sub>) degradation at temperatures ranging from 25 to 450 °C. Up to 100% of C<sub>7</sub>H<sub>8</sub> conversion into CO<sub>2</sub> was achieved over the Au-TiO<sub>2</sub> nanocatalysts, demonstrating that this dry method is a very efficient way to prepare highly active nanocatalysts.</p>