Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Miglio, L.

  • Google
  • 10
  • 51
  • 98

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2021Thermodynamic driving force in the formation of hexagonal-diamond Si and Ge nanowires7citations
  • 2021Nature and Shape of Stacking Faults in 3C-SiC by Molecular Dynamics Simulations6citations
  • 2021Extended defects in 3C-SiC: Stacking faults, threading partial dislocations, and inverted domain boundaries38citations
  • 2021Growth of thick [1 1 1]-oriented 3C-SiC films on T-shaped Si micropillars12citations
  • 2021Unveiling Planar Defects in Hexagonal Group IV Materials17citations
  • 2019Crystal free energy of SiC polytypes and stacking faults formation energy from DFT-based lattice-dynamics approachcitations
  • 2019Template effect of the nanowire core on the growth of hexagonal Si/Ge shell:a first principles modelingcitations
  • 2019Multiple stacking fault formation via the evolution of related dislocations by molecular dynamics simulationscitations
  • 2019From the crystal free energy of SiC polytypes to the stacking faults formation energy: a DFT-based lattice-dynamics approach.citations
  • 2014Three-dimensional epitaxial Si 1-x Ge x , Ge and SiC crystals on deeply patterned Si substrates18citations

Places of action

Chart of shared publication
Sarikov, A.
4 / 4 shared
Scalise, Emanuele
1 / 4 shared
Marzegalli, A.
8 / 11 shared
Barbisan, L.
2 / 4 shared
Montalenti, F.
6 / 11 shared
Migas, D. B.
1 / 1 shared
Zimbone, M.
1 / 2 shared
Bongiorno, C.
1 / 11 shared
Scuderi, V.
1 / 3 shared
La Via, F.
3 / 3 shared
Calabretta, C.
2 / 2 shared
Mancarella, F.
2 / 3 shared
Bergamaschini, R.
2 / 3 shared
Crippa, D.
2 / 2 shared
Albani, M.
1 / 1 shared
Boninelli, S.
1 / 5 shared
Agati, M.
1 / 1 shared
Mauceri, M.
2 / 2 shared
Dijkstra, A.
1 / 2 shared
Sun, L.
1 / 16 shared
T., Fadaly E. M.
1 / 1 shared
Scalise, E.
4 / 8 shared
Ren, Y.
1 / 13 shared
Rurali, R.
1 / 4 shared
De Luca, M.
1 / 2 shared
Zardo, I.
1 / 4 shared
Botti, S.
1 / 8 shared
M., Haverkort J. E.
1 / 1 shared
De Matteis, D.
1 / 1 shared
M., Bakkers E. P. A.
1 / 1 shared
A., Verheijen M.
1 / 1 shared
Grassi, F.
1 / 1 shared
Barbisan, Luca
1 / 4 shared
Sarikov, Andrey
1 / 8 shared
Dommann, A.
1 / 10 shared
Isa, F.
1 / 7 shared
Puglisi, M.
1 / 1 shared
Barthazy, E. J.
1 / 2 shared
Falub, C. V.
1 / 8 shared
Piluso, N.
1 / 1 shared
Taboada, A. G.
1 / 1 shared
Niedermann, P.
1 / 3 shared
Kreiliger, T.
1 / 2 shared
Anzalone, R.
1 / 4 shared
Von Känel, H.
1 / 1 shared
Müller, E.
1 / 16 shared
Meduňa, M.
1 / 3 shared
Neels, A.
1 / 11 shared
Chrastina, D.
1 / 13 shared
Kaufmann, R.
1 / 3 shared
Isella, G.
1 / 32 shared
Chart of publication period
2021
2019
2014

Co-Authors (by relevance)

  • Sarikov, A.
  • Scalise, Emanuele
  • Marzegalli, A.
  • Barbisan, L.
  • Montalenti, F.
  • Migas, D. B.
  • Zimbone, M.
  • Bongiorno, C.
  • Scuderi, V.
  • La Via, F.
  • Calabretta, C.
  • Mancarella, F.
  • Bergamaschini, R.
  • Crippa, D.
  • Albani, M.
  • Boninelli, S.
  • Agati, M.
  • Mauceri, M.
  • Dijkstra, A.
  • Sun, L.
  • T., Fadaly E. M.
  • Scalise, E.
  • Ren, Y.
  • Rurali, R.
  • De Luca, M.
  • Zardo, I.
  • Botti, S.
  • M., Haverkort J. E.
  • De Matteis, D.
  • M., Bakkers E. P. A.
  • A., Verheijen M.
  • Grassi, F.
  • Barbisan, Luca
  • Sarikov, Andrey
  • Dommann, A.
  • Isa, F.
  • Puglisi, M.
  • Barthazy, E. J.
  • Falub, C. V.
  • Piluso, N.
  • Taboada, A. G.
  • Niedermann, P.
  • Kreiliger, T.
  • Anzalone, R.
  • Von Känel, H.
  • Müller, E.
  • Meduňa, M.
  • Neels, A.
  • Chrastina, D.
  • Kaufmann, R.
  • Isella, G.
OrganizationsLocationPeople

article

Thermodynamic driving force in the formation of hexagonal-diamond Si and Ge nanowires

  • Sarikov, A.
  • Scalise, Emanuele
  • Miglio, L.
  • Marzegalli, A.
  • Barbisan, L.
  • Montalenti, F.
  • Migas, D. B.
Abstract

The metastable hexagonal-diamond phase of Si and Ge (and of SiGe alloys) displays superior optical properties with respect to the cubic-diamond one. Based on first-principle calculations we show that the surface energy of the typical facets exposed in Si and Ge nanowires is lower in the hexagonal-diamond phase than in the cubic one. By exploiting a synergic approach based also on a recent state-of-the-art interatomic potential and on a simple geometrical model, we investigate the relative stability of nanowires in the two phases up to few tens of nm in radius, highlighting the surface-related driving force and discussing its relevance in recent experiments. <P />We also explore the stability of Si and Ge core-shell nanowires with hexagonal cores (made of GaP for Si nanowires, of GaAs for Ge nanowires). In this case, the stability of the hexagonal shell over the cubic one is also favored by the energy cost associated with the interface linking the two phases. Interestingly, our calculations indicate a critical radius of the hexagonal shell much lower than the one reported in recent experiments, indicating the presence of a large kinetic barrier allowing for the enlargement of the wire in a metastable phase....

Topics
  • impedance spectroscopy
  • surface
  • experiment
  • wire
  • surface energy
  • metastable phase