People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Amri, A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2021Physicochemical properties of geopolymer composites with DFT calculations of in-situ reduction of graphene oxidecitations
- 2021Very-few-layer graphene obtained from facile two-step shear exfoliation in aqueous solutioncitations
- 2021High temperature (up to 1200 °C) thermal-mechanical stability of Si and Ni doped CrN framework coatingscitations
- 2020Sol-gel derived ITO-based bi-layer and tri-layer thin film coatings for organic solar cells applicationscitations
- 2019Nanorose-like ZnCo2O4 coatings synthesized via sol–gel route: Morphology, grain growth and DFT simulationscitations
- 2018Conductive composites of tapioca based bioplastic and electrochemical-mechanical liquid exfoliation (emle) graphenecitations
- 2017Improving the optoelectronic properties of titanium-doped indium tin oxide thin filmscitations
- 2017Structural and optical characteristics of pre- and post-annealed sol-gel derived CoCu-oxide coatingscitations
- 2017Investigation of the post-annealing electromagnetic response of Cu–Co oxide coatings via optical measurement and computational modellingcitations
- 2017Probing the effects of thermal treatment on the electronic structure and mechanical properties of Ti-doped ITO thin filmscitations
- 2016Structural thermal stability of graphene oxide-doped copper-cobalt oxide coatings as a solar selective surfacecitations
- 2016Effects of annealing temperatures on the morphological, mechanical, surface chemical bonding, and solar selectivity properties of sputtered TiAlSiN thin filmscitations
- 2016Structural, optical, and mechanical properties of cobalt copper oxide coatings synthesized from low concentrations of sol-gel processcitations
- 2016Chemical bonding states and solar selective characteristics of unbalanced magnetron sputtered TixM1−x−yNyfilmscitations
- 20153d transition metal oxide based sol-gel derived coatings for photothermal applications
- 2014Understanding local bonding structures of Ni-doped chromium nitride coatings through synchrotron radiation NEXAFS spectroscopycitations
Places of action
Organizations | Location | People |
---|
article
Sol-gel derived ITO-based bi-layer and tri-layer thin film coatings for organic solar cells applications
Abstract
In this investigation, ITO-based bi-layer and tri-layer thin film coatings (~130 nm) were synthesized via a sol-gel spin-coating process and annealed at 500 °C. Thin layers of Au, Au-NPs, Ag-NPs and AgO were inserted underneath ITO films to form bi-layer thin film systems and/or encapsulated between two thin ITO layers to form tri-layer thin film systems. The effects of incorporating these layers with ITO thin films were investigated by X-ray diffraction, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), UV–Vis spectroscopy, four-point probes and Hall effect. XRD results confirmed the presence of a body-centred cubic structure of indium oxide for all synthesized ITO-based coatings with an average grain size ~30 nm. FESEM images of all fabricated films revealed the formation of dense surfaces with grain-like morphologies confirming the formation of a polycrystalline structure of ITO. Optical studies on the Ag-NPs and Au-NPs colloidal solutions resulted in absorption peaks featured at wavelengths 405 and 531 nm, indicating the formation of 10–14 nm and 48 nm Ag and Au nanoparticles, respectively. The highest optical transparency and band gap energy were found to be ~91.5% and 3.75 eV for (AgO)I and (I(AgO)I) thin films, respectively. The lowest electrical resistivity of 1.2 × 10−4 Ω·cm, along with the highest carrier concentration of 11.4 × 1020 cm−3 and mobility 40 cm2/V.s were obtained from the IAuI thin film. An improvement in the power conversion efficiency (PCE) from 3.8 to 4.9% was achieved in an organic solar cell by replacing the conventional pure ITO electrode with the (I(AgO)I) electrode.