People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kuczyńska-Zemła, Donata
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2024A novel approach to enhance mechanical properties of Ti substrates for biomedical applicationscitations
- 2022Surface Properties and Mechanical Performance of Ti-Based Dental Materials: Comparative Effect of Valve Alloying Elements and Structural Defectscitations
- 2020Biological properties of a novel β-Ti alloy with a low young’s modulus subjected to cold rollingcitations
- 2020Effect of laser functionalization of titanium on bioactivity and biological responsecitations
Places of action
Organizations | Location | People |
---|
article
Effect of laser functionalization of titanium on bioactivity and biological response
Abstract
This study proposes Direct Laser Interference Lithography as a highly suitable technique for functionalization titanium surfaces for biomedical applications. DLIL was employed to produce periodic patterns on titanium after two commonly used surface treatments of implantable devices (shot peening and acid etching). The biomedical potential of the proposed method was analyzed using immersion tests in a simulated body fluid solution and cell adhesion tests. After 48 h of immersion surface morphology, the chemical composition and phase structure of the apatite layers deposited on the modified titanium were analyzed. In order to analyze the kinetics of the apatite layer growth, X-Ray Photoelectron Spectroscopy measurements at different soaking times were performed. Cell adhesion tests were performed using human fetal osteoblastic cells (hFOB). The adhered cells were analyzed using confocal and scanning electron microscopies after 48 h of incubation. The formation of biomimetic apatite layers was accelerated on the titanium surface structures after DLIL modification. The periodic titanium patterns induced more uniform and direct cell growth. This effect is mainly connected with the surface properties of the DLIL-modified substrates. The formation mechanism of biomimetic apatite on the textured titanium samples, as well as the compounds created on the surface, are discussed.