Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Morris, M. A.

  • Google
  • 3
  • 20
  • 37

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2022Aluminium oxide formation via atomic layer deposition using a polymer brush mediated selective infiltration approach9citations
  • 2020Aluminium oxide formation via atomic layer deposition using a polymer brush mediated selective infiltration approach9citations
  • 2018Highly Ordered Titanium Dioxide Nanostructures via a Simple One-Step Vapor-Inclusion Method in Block Copolymer Films19citations

Places of action

Chart of shared publication
Lundy, R.
2 / 5 shared
Hughes, G.
2 / 14 shared
Saari, J.
2 / 4 shared
Snelgrove, M.
2 / 3 shared
Mcfeely, C.
2 / 3 shared
Oconnor, R.
2 / 7 shared
Mani-Gonzalez, P. G.
2 / 2 shared
Yadav, P.
2 / 4 shared
Lahtonen, K.
1 / 7 shared
Valden, M.
1 / 5 shared
Mcglynn, E.
2 / 5 shared
Valden, Mika
1 / 37 shared
Lahtonen, Kimmo
1 / 38 shared
Howse, J. R.
1 / 4 shared
Giraud, E. C.
1 / 1 shared
Topham, P. D.
1 / 2 shared
Smith, A. J.
1 / 6 shared
Mokarian-Tabari, P.
1 / 2 shared
Arnold, T.
1 / 7 shared
Toolan, D. T. W.
1 / 3 shared
Chart of publication period
2022
2020
2018

Co-Authors (by relevance)

  • Lundy, R.
  • Hughes, G.
  • Saari, J.
  • Snelgrove, M.
  • Mcfeely, C.
  • Oconnor, R.
  • Mani-Gonzalez, P. G.
  • Yadav, P.
  • Lahtonen, K.
  • Valden, M.
  • Mcglynn, E.
  • Valden, Mika
  • Lahtonen, Kimmo
  • Howse, J. R.
  • Giraud, E. C.
  • Topham, P. D.
  • Smith, A. J.
  • Mokarian-Tabari, P.
  • Arnold, T.
  • Toolan, D. T. W.
OrganizationsLocationPeople

article

Aluminium oxide formation via atomic layer deposition using a polymer brush mediated selective infiltration approach

  • Valden, Mika
  • Lundy, R.
  • Hughes, G.
  • Saari, J.
  • Snelgrove, M.
  • Mcfeely, C.
  • Oconnor, R.
  • Mani-Gonzalez, P. G.
  • Lahtonen, Kimmo
  • Yadav, P.
  • Morris, M. A.
  • Mcglynn, E.
Abstract

Area selective deposition (ASD) is an emerging method for the patterning of electronic devices as it can significantly reduce processing steps in the industry. A potential ASD methodology uses infiltration of metal precursors into patterned polymer materials. The work presented within demonstrates this potential by examining hydroxy terminated poly(2-vinylpyridine) (P2VP-OH) as the ‘receiving’ polymer and trimethylaluminium (TMA) and H2O as the material precursors in a conventional atomic layer deposition (ALD) process. Fundamental understanding of the surface process was achieved using X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) mapping via transmission electron microscopy (TEM). The resulting analysis confirms aluminium inclusion within the polymer film. Spectroscopic and microscopic characterisation show metal infiltration throughout the polymer to the underlying silicon dioxide interface. Exposing the infiltrated film to an oxygen plasma results in the removal of the organic component and resultant fabrication of a sub 5 nm aluminium oxide layer.

Topics
  • impedance spectroscopy
  • surface
  • polymer
  • inclusion
  • x-ray photoelectron spectroscopy
  • Oxygen
  • aluminum oxide
  • aluminium
  • transmission electron microscopy
  • Silicon
  • Energy-dispersive X-ray spectroscopy
  • atomic layer deposition