Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lee, P-C

  • Google
  • 1
  • 8
  • 45

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Biocompatibility study of multi-layered hydroxyapatite coatings synthesized on Ti-6Al-4V alloys by RF magnetron sputtering for prosthetic-orthopaedic implant applications45citations

Places of action

Chart of shared publication
Truc, L. N. T.
1 / 1 shared
Thair, L.
1 / 2 shared
Dlugogorski, B. Z.
1 / 8 shared
Jumaa, T. A-J
1 / 1 shared
Hamdi, D. A.
1 / 1 shared
Jiang, Z-T
1 / 29 shared
Kim, J.
1 / 44 shared
No, K.
1 / 1 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Truc, L. N. T.
  • Thair, L.
  • Dlugogorski, B. Z.
  • Jumaa, T. A-J
  • Hamdi, D. A.
  • Jiang, Z-T
  • Kim, J.
  • No, K.
OrganizationsLocationPeople

article

Biocompatibility study of multi-layered hydroxyapatite coatings synthesized on Ti-6Al-4V alloys by RF magnetron sputtering for prosthetic-orthopaedic implant applications

  • Lee, P-C
  • Truc, L. N. T.
  • Thair, L.
  • Dlugogorski, B. Z.
  • Jumaa, T. A-J
  • Hamdi, D. A.
  • Jiang, Z-T
  • Kim, J.
  • No, K.
Abstract

Triple-layered RF magnetron sputtered HAp/Al2O3/TiO2 coatings synthesized onto Ti-6Al-4V alloys were studied to improve the surface biocompatibility and corrosion resistance features. It was seen that the HAp layers played a substantial role in the biocompatibility, while the intermediate Al2O3/TiO2 layers were used to enhance the corrosion behavior of the substrate. XRD results showed an enhanced crystallinity along with the (2 1 1) HAp phase after the simulated body fluid (SBF) immersion experiment. Local electronic and chemical bonding states of atomic phosphorus and calcium phosphate groups in the coatings, before and after immersion process, were confirmed via XPS studies. The electrochemical impedance spectroscopy (EIS) evaluated the corrosion, which indicated a reduction in capacitance values and a significant improvement of the corrosion resistance of such coatings; with improved bio-medical properties of Ti alloys.

Topics
  • surface
  • corrosion
  • phase
  • x-ray diffraction
  • experiment
  • x-ray photoelectron spectroscopy
  • layered
  • electrochemical-induced impedance spectroscopy
  • Calcium
  • crystallinity
  • biocompatibility
  • Phosphorus