People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Chodun, Rafał
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2021Synthesis of Copper Nitride Layers by the Pulsed Magnetron Sputtering Method Carried out under Various Operating Conditionscitations
- 2021The Microstructure and Properties of Carbon Thin Films on Nanobainitic Steelcitations
- 2020Design of pulsed neon injection in the synthesis of W-B-C films using magnetron sputtering from a surface-sintered single powder cathodecitations
- 2020Surface sintering of tungsten powder targets designed by electromagnetic discharge: A novel approach for film synthesis in magnetron sputteringcitations
- 2019Plasmochemical investigations of DLC/WCx nanocomposite coatings synthesized by gas injection magnetron sputtering techniquecitations
- 2019Influence of annealing on electronic properties of thin AlN films deposited by magnetron sputtering method on silicon substratescitations
- 2018Relation between modulation frequency of electric power oscillation during pulse magnetron sputtering deposition of MoNx thin filmscitations
- 2018Phase composition of copper nitride coatings examined by the use of X-ray diffraction and Raman spectroscopycitations
- 2018Structure and electrical resistivity dependence of molybdenum thin films deposited by dc modulated pulsed magnetron sputteringcitations
- 2017Reactive sputtering of titanium compounds using the magnetron system with a grounded cathodecitations
- 2017Multi-sided metallization of textile fibres by using magnetron system with grounded cathodecitations
- 2016Determination of sp 3 fraction in ta-C coating using XPS and Raman spectroscopy
- 2016Titanium nitride coatings synthesized by IPD method with eliminated current oscillationscitations
- 2010Structure of Fe-Cu coatings prepared by the magnetron sputtering method
Places of action
Organizations | Location | People |
---|
article
Relation between modulation frequency of electric power oscillation during pulse magnetron sputtering deposition of MoNx thin films
Abstract
This work reports the results of a study, concerning the synthesis of molybdenum nitride thin films, by DC Pulsed Magnetron Sputtering method (PMS), operating with 100 kHz main frequency, and modulated by the additional frequency, adjustable in the range of 10–1000 Hz (modulated Pulse Magnetron Sputtering – mPMS). We have studied the influence of mPMS on the state of plasma using optical emission spectroscopy technique (OES). X-ray photoelectron spectroscopic analysis (XPS) and X-ray diffractometry (XRD) were also used to investigate the relationship between phase composition and modulation frequency of Mo-N thin films. These investigations have revealed a presence of low-temperature phases of β-Mo16N7 and δ-MoN, confirming correlation between chemical state of Mo 3d3/2, 3d5/2 or 3p3/2 and amount of nitrogen incorporation in Mo-N structures. Films’ morphology was well examined by scanning electron microscopy (SEM) and consists the nanocrystalline/amorphous domains. From the utilitarian point of view, very good thermal stability, promising mechanical properties being: H ∼ 16 GPa, E∗ ∼ 180 GPa (NanoTest) and low value of resistivity below 650 μΩcm (4-point probe method) of the Mo-N, predestine them as an effective diffusion barrier in Cu-wired MOSFET structures. Results confirmed that additional modulation frequency should be considered as a significant factor of electric power oscillation during reactive synthesis by means of PMS-based method.