Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Luz, Aline R.

  • Google
  • 2
  • 9
  • 44

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Tribocorrosion and Mechanical Properties of Nanotubes Grown on Ti–35Nb Alloy by Anodizationcitations
  • 2018Characterization of the morphology, structure and wettability of phase dependent lamellar and nanotube oxides on anodized Ti-10Nb alloy44citations

Places of action

Chart of shared publication
Alves, Ana Paula R.
1 / 1 shared
Kuromoto, Neide K.
2 / 4 shared
Lima, Gabriel Goetten De
1 / 6 shared
Lepienski, Carlos M.
2 / 2 shared
Grandini, Carlos R.
1 / 1 shared
Kasiorowski, Tuany
1 / 1 shared
Souza, Gelson B. De
1 / 2 shared
Kuroda, Pedro B.
1 / 1 shared
Sopchenski Santos, Luciane
1 / 11 shared
Chart of publication period
2024
2018

Co-Authors (by relevance)

  • Alves, Ana Paula R.
  • Kuromoto, Neide K.
  • Lima, Gabriel Goetten De
  • Lepienski, Carlos M.
  • Grandini, Carlos R.
  • Kasiorowski, Tuany
  • Souza, Gelson B. De
  • Kuroda, Pedro B.
  • Sopchenski Santos, Luciane
OrganizationsLocationPeople

article

Characterization of the morphology, structure and wettability of phase dependent lamellar and nanotube oxides on anodized Ti-10Nb alloy

  • Kuroda, Pedro B.
  • Kuromoto, Neide K.
  • Luz, Aline R.
  • Sopchenski Santos, Luciane
  • Lepienski, Carlos M.
Abstract

<p>Nanotubes grown on Ti and its alloys have been extensively investigated for the biomaterials applications, since these structures improve the surface biocompatibility and the corrosion resistance due to oxide formation. Some researchers showed that the microstructure of the pure Ti affect the morphology of nanotubes grown by anodic process. However, this subject is rarely investigated for nanotubes grown on Ti alloys. In the same way, nanostructured films formed by concomitant regions of tubes and lamellar structures hardly ever were reported. Investigations concerning these topics are required once beta titanium alloys are suitable candidates to replace the pure Ti and Ti-Al-V alloys for biomedical applications. Beta alloys composed of non-toxic elements (Nb, Ta, Mo) are biocompatible and have an excellent mechanical properties and corrosion resistance. The present work investigated questions regarding to the effect of microstructure of Ti-10Nb alloy on morphology of nanostructured film growth by anodization. The morphology, thickness, composition and atomic arrangement (amorphous/crystalline) of formed oxides, and the contact angle of anodic film were investigated. The X-ray diffraction patterns and SEM image show that the Ti-10Nb alloy is composed by alpha (hcp) and beta (bcc) phases. SEM and TEM techniques revel that self-organized nanotubes grew on alpha phase, whereas a lamellar structure with transversal holes grew on β-phase. Crystalline oxides are formed at oxide-metal interface, as indicated by X-ray diffraction patterns. However, the tubes and lamellas grown over the compact oxide are amorphous, as-prepared and annealed at 230 °C for 3 h, as showed by SAED patterns. The nanostructured films annealed at 430 °C and at 530 °C were damaged. A few changes were observed in XRD patterns of film annealed at 230 °C while the morphology held similar as the unannealed film. Finally, the presence of phosphorus ions incorporated into the anodic layer makes the surface hydrophilic, since a similar nanostructured film without phosphorous incorporation results hydrophobic.</p>

Topics
  • impedance spectroscopy
  • surface
  • amorphous
  • corrosion
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • nanotube
  • transmission electron microscopy
  • titanium
  • titanium alloy
  • biomaterials
  • biocompatibility
  • Phosphorus
  • lamellae