People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jarząbek, Dariusz
Institute of Fundamental Technological Research
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Role of the microstructure and the residual strains on the mechanical properties of cast tungsten carbide produced by different methods
- 2021Improved mechanical properties of W-Zr-B coatings deposited by hybrid RF magnetron – PLD methodcitations
- 2020Synthesis and Mechanical Characterization of a CuMoTaWV High-Entropy Film by Magnetron Sputteringcitations
- 2020Size Effects of Hardness and Strain Rate Sensitivity in Amorphous Silicon Measured by Nanoindentationcitations
- 2020Enhancement of mechanical properties of vertically aligned carbon nanotube arrays due to N<sup>+</sup> ion irradiationcitations
- 2019Experimental and numerical studies of micro- and macromechanical properties of modified copper–silicon carbide compositescitations
- 2018The impact of weak interfacial bonding strength on mechanical properties of metal matrix – ceramic reinforced compositescitations
- 2018The Influence of Alkali Metal Chloride Treatments on the Wear Resistance of Silicon Surfaces for Possible Use in MEMScitations
- 2018Influence of Cu coating of SiC particles on mechanical properties of Ni/SiC co-electrodeposited compositescitations
- 2017Effect of metallic coating on the properties of copper-silicon carbide compositescitations
- 2017Investigations of interface properties in copper-silicon carbide compositescitations
- 2017Surface mechanical properties
- 2017The effect of metal coatings on the interfacial bonding strength of ceramics to copper in sintered Cu-SiC compositescitations
- 2016The Influence of the Particle Size on the Adhesion Between Ceramic Particles and Metal Matrix in MMC Compositescitations
- 2015The measurement of the adhesion force between ceramic particles and metal matrix in ceramic reinforced-metal matrix compositescitations
- 2015Influence of Alkali Ions on Tribological Properties of Silicon Surfacecitations
- 2014Elastic modulus and fracture strength evaluation on the nanoscale by scanning force microscope experimentscitations
- 2011Development of an experimental technique for testing rheological properties of ultrathin polymer films used in nanoimprint lithographycitations
- 2009Friction and adhesion of carbon nanotube brushescitations
Places of action
Organizations | Location | People |
---|
article
Effect of metallic coating on the properties of copper-silicon carbide composites
Abstract
In the presented paper a coating of SiC particles with a metallic layer was used to prepare copper matrixcomposite materials. The role of the layer was to protect the silicon carbide from decomposition anddissolution of silicon in the copper matrix during the sintering process. The SiC particles were coveredby chromium, tungsten and titanium using Plasma Vapour Deposition method. After powder mixingof components, the final densification process via Spark Plasma Sintering (SPS) method at temperature950 ◦C was provided. The almost fully dense materials were obtained (>97.5%). The microstructure ofobtained composites was studied using scanning electron microscopy as well as transmission electronmicroscopy. The microstructural analysis of composites confirmed that regardless of the type of depositedmaterial, there is no evidence for decomposition process of silicon carbide in copper. In order to measurethe strength of the interface between ceramic particles and the metal matrix, the micro tensile testshave been performed. Furthermore, thermal diffusivity was measured with the use of the laser pulsetechnique. In the context of performed studies, the tungsten coating seems to be the most promisingsolution for heat sink application. Compared to pure composites without metallic layer, Cu-SiC with Wcoating indicate the higher tensile strength and thermal diffusitivy, irrespective of an amount of SiCreinforcement. The improvement of the composite properties is related to advantageous condition ofCu-SiC interface characterized by well homogenity and low porosity, as well as individual properties ofthe tungsten coating material.